
Matrices

0.0.1 Matrices

A real m× n matrix is a rectangular array
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 (0.1)

The diagonal entries are the aij with i = j, i.e. the aii; the ith row is composed of entries of
the form ai1, ai2, . . . , ain, and the jth column is composed of entries of the form a1j , a2j , . . . , amj .
(More generally, we may take the entries aij from an abstract field F or a ring R, but for now we
suppose F = R, the real numbers.)

The set of real m× n matrices is denoted

Mm,n(R) or Mm×n(R) or Rm×n (0.2)

Similarly, the set of m × n matrices over a ring R is denoted Mm,n(R) and Mm×n(R), etc., and
likewise with matrices over a field F . In the case that m = n we also write Mn(R), and we call a
matrix in Mn(R) a square matrix.

Example 0.1 For example, M3(R) is the set of all real 3× 3 matrices, and M5,7(2Z) is the set of
all 5× 7 matrices with even integer entries. �

We can view these arrays as mathematical objects and impose on the set Rm×n of them some
algebraic structure. First, we define addition in Rm×n,

+ : Rm×n × Rm×n → Rm×n (0.3)

as follows: if A,B ∈ Rm×n, we define + componentwise to be the matrix

A+B =

a11 · · · a1n
...

. . .
...

am1 · · · amn

+

 b11 · · · b1n
...

. . .
...

bm1 · · · bmn

 :=

 a11 + b11 · · · a1n + b1n
...

. . .
...

am1 + bm1 · · · amn + bmn

 (0.4)

Remark 0.2 Note that this will make
(
Rm×n,+

)
into an abelian group, abelianness coming from

the abelianness of the additive group (R,+)–that is, addition of real numbers is commutative, and
since matrix addition is defined componentwise, it, too, is commutative. �

The operation of scalar multiplication on Mm,n(R),

·s : R× Rm×n → Rm×n (0.5)

is also defined componentwise: if c ∈ R and A ∈ Rm×n, then cA is the matrix

cA = c

a11 · · · a1n
...

. . .
...

am1 · · · amn

 :=

 ca11 · · · ca1n
...

. . .
...

cam1 · · · camn

 (0.6)
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In addition, we can endow the cartesian product of two (possibly different) sets of matrices with a
binary matrix multiplication function,

· : Rm×n × Rn×p → Rm×p (0.7)

taking an m× n matrix A and an n× p matrix B and giving an m× p matrix C – as long as n is a
common integer for Rm×n and Rn×p, otherwise the operation is undefined. Formally, if A ∈ Rm×n,
B ∈ Rn×p, then · is denoted by juxtaposition and is given by

AB =

a11 · · · a1n
...

. . .
...

am1 · · · amn


b11 · · · b1p

...
. . .

...
bn1 · · · bnp

 =


∑n

k=1 a1kbk1 · · ·
∑n

k=1 a1kbkp
...

. . .
...∑n

k=1 amkbk1 · · ·
∑n

k=1 amkbkp

 (0.8)

Remark 0.3 In general
(
Rm×n, ·

)
will not be a group, since not every matrix has a multiplicative

inverse. This is clear if m 6= n. However,
(
Rm×n,+, ·

)
, is a ring. �

For any matrix A ∈ Rm×n, we may define another matrix, the transpose of A, which is the matrix
AT ∈ Rn×m whose entries are given by AT

ji = Aij , for 1 ≤ i ≤ m, 1 ≤ j ≤ n. That is,

A =

a11 a12 · · · a1n
...

... · · ·
...

am1 am2 · · · amn

 −→ AT =

a11 a21 · · · am1

...
... · · ·

...
a1n a2n · · · amn

 (0.9)

Indeed, we may view the transpose of A as a function, T : Rm×n → Rn×m, which we will see is a
linear transformation.

The trace of a square matrix A ∈ Rn×n is a function tr : Rn×n → F given by

tr(A) = a11 + · · ·+ ann =

n∑
i=1

aii (0.10)

i.e. by summing the diagonal entries of A.

A square matrix A ∈ Rn×n is said to be invertible if there exists a matrix B ∈ Rn×n such that
AB = I. That is, A is invertible if it is a unit in the ring Rn×n. The set of all n × n invertible
matrices, when considered as a multiplicative group under the matrix multiplication map, i.e. the
group of units of the ring Rn×n, is called the general linear group, and denoted GL(n,R),

GL(n,R) := {A ∈ Rn×n |A is invertible} (0.11)

= Mn(R)× = (Rn×n)× (0.12)

The notation GLn(R) is also used. The identity element in GL(n,R) is the identity matrix
In ∈ Rn×n is given by (In)ij := δij , that is

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


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0.0.2 Special Matrices

To study matrices in further detail, we will need to perform elementary row and column oper-
ations on them. If A ∈ Rm×n, any one of the following operations on the rows or columns of A is
called an elementary row (resp. column) operation

type 1: interchanging any two rows (resp. columns) of A

type 2: multiplying any row (resp. column) of A by a nonzero scalar

type 3: adding any scalar multiple of a row (resp. column) of A to another row/column

Note that E ∈ Rm×m if it performs a row operation, in which case it left-multiplies A, and E ∈ Rn×n

if it performs a column operation, in which case it right-multiplies A. That is, EA defines a row
operation, and AE defines a column operation.

We will need the Kronecker delta function

δ : N× N→ {0, 1} (0.13)

in what follows, which is given by

δij =

{
1 if i = j

0 if i 6= j
(0.14)

Using the Kronecker delta function we list here some other important special matrices. These
matrices can be defined over any field F , not just the field of reals R. Indeed, they may be defined
over any ring R, such as the ring of polynomials F [x] over a field F or indeed the ring of matrices
Fn×n.

1. A diagonal matrix A ∈ Fn×n is said to be diagonal if i 6= j =⇒ Aij = 0.

2. An upper triangular A ∈ Fn×n satisfies i > j =⇒ Aij = 0.

3. A symmetric matrix is a square matrix A ∈ Fn×n which satisfies A = AT .

4. A skew-symmetric matrix A ∈ Fn×n satisfies A = −AT .

5. An idempotent matrix A ∈ Fn×n satisfies A2 = A. Such a matrix has only 0 and 1 as
eigenvalues.

6. A nilpotent matrix A ∈ Fn×n is one for which there is some k ∈ N such that Ak = O. Such
a matrix has only 0 as an eigenvalue.

7. A scalar matrix A ∈ Fn×n is of the form A = λIn for some scalar λ ∈ F . All its diagonal
entries are equal, and non-diagonal entries are 0.

8. An incidence matrix is a square matrix in which all the entries are either 0 or 1, and for
convenience, all the diagonal entries are 0.

9. Two matrices A,B ∈ Fm×n are said to be row equivalent matrices if either one can be
obtained from the other by a series of elementary row operations, that is by left-multiplication
be a sequence of elementary matrices. Row equivalence is an equivalence relation on Fm×n.

10. Two column equivalent matrices A,B ∈ Fm×n are such that one can be obtained from
the other by a series of elementary column operations, that is by right-multiplication by a
sequence of elementary matrices. Column equivalence is an equivalence relation on Fm×n.
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11. Two matrices A,B ∈ Fm×n are said to be equivalent matrices if there exist invertible
matrices P ∈ GL(m,F ) and Q ∈ GL(n, F ) such that B = PAQ−1, that is if A and B are both
(or either) row and column equivalent.

12. Two square matrices A,B ∈ Fn×n are said to be similar matrices if ∃P ∈ GL(n, F ) invertible
such that B = PAP−1.

The direct sum of square matrices B1, B2, . . . , Bk are square matrices (not necessarily of equal
dimension) is defined recursively as follows: if B1 ∈ Fn×n and B2 ∈ Fm×m, the direct sum of B1

and B2 is given by

B1 ⊕B2 = A ∈ Fm+n×m+n, Aij =


(B1)ij for 1 ≤ i, j ≤ m
(B2)i−m,j−m for m+ 1 ≤ i, j ≤ m+ n

0 otherwise

=

(
B1 O
O B2

)
The definition then extends recursively,

k⊕
i=1

Bi = B1 ⊕B2 ⊕ · · · ⊕Bk

:= (B1 ⊕B2 ⊕ · · · ⊕Bk−1)⊕Bk

=


B1 O · · · O
O B2 · · · O
...

...
. . .

...
O O · · · Bk


Analogous definitions apply to matrices over a ring R. This definition will play an important role in
the Jordan and rational canonical forms of matrices and linear transformations, where we will need
to decompose a space into a direct sum of T -invariant subspaces, each with an associated matrix
representation of T restricted to that subspace.
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