Matrices

0.0.1 Matrices

I.

A real $m \times n$ matrix is a rectangular array

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
(0.1)

The **diagonal entries** are the a_{ij} with i = j, i.e. the a_{ii} ; the *i*th row is composed of entries of the form $a_{i1}, a_{i2}, \ldots, a_{in}$, and the *j*th column is composed of entries of the form $a_{1j}, a_{2j}, \ldots, a_{mj}$. (More generally, we may take the entries a_{ij} from an abstract field F or a ring R, but for now we suppose $F = \mathbb{R}$, the real numbers.)

The set of real $m \times n$ matrices is denoted

$$M_{m,n}(\mathbb{R})$$
 or $M_{m \times n}(\mathbb{R})$ or $\mathbb{R}^{m \times n}$ (0.2)

Similarly, the set of $m \times n$ matrices over a ring R is denoted $M_{m,n}(R)$ and $M_{m \times n}(R)$, etc., and likewise with matrices over a field F. In the case that m = n we also write $M_n(\mathbb{R})$, and we call a matrix in $M_n(\mathbb{R})$ a square matrix.

Example 0.1 For example, $M_3(\mathbb{R})$ is the set of all real 3×3 matrices, and $M_{5,7}(2\mathbb{Z})$ is the set of all 5×7 matrices with even integer entries.

We can view these arrays as mathematical objects and impose on the set $\mathbb{R}^{m \times n}$ of them some algebraic structure. First, we define **addition** in $\mathbb{R}^{m \times n}$,

$$+: \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n} \tag{0.3}$$

as follows: if $A, B \in \mathbb{R}^{m \times n}$, we define + componentwise to be the matrix

$$A + B = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix} := \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$
(0.4)

Remark 0.2 Note that this will make $(\mathbb{R}^{m \times n}, +)$ into an abelian group, abelianness coming from the abelianness of the additive group $(\mathbb{R}, +)$ -that is, addition of real numbers is commutative, and since matrix addition is defined componentwise, it, too, is commutative.

The operation of scalar multiplication on $M_{m,n}(\mathbb{R})$,

$$\cdot_s : \mathbb{R} \times \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n} \tag{0.5}$$

is also defined componentwise: if $c \in \mathbb{R}$ and $A \in \mathbb{R}^{m \times n}$, then cA is the matrix

$$cA = c \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} := \begin{pmatrix} ca_{11} & \cdots & ca_{1n} \\ \vdots & \ddots & \vdots \\ ca_{m1} & \cdots & ca_{mn} \end{pmatrix}$$
(0.6)

In addition, we can endow the cartesian product of two (possibly different) sets of matrices with a binary **matrix multiplication** function,

$$P: \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times p} \to \mathbb{R}^{m \times p} \tag{0.7}$$

taking an $m \times n$ matrix A and an $n \times p$ matrix B and giving an $m \times p$ matrix C – as long as n is a common integer for $\mathbb{R}^{m \times n}$ and $\mathbb{R}^{n \times p}$, otherwise the operation is undefined. Formally, if $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, then \cdot is denoted by juxtaposition and is given by

$$AB = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{np} \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^{n} a_{1k}b_{k1} & \cdots & \sum_{k=1}^{n} a_{1k}b_{kp} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{mk}b_{k1} & \cdots & \sum_{k=1}^{n} a_{mk}b_{kp} \end{pmatrix}$$
(0.8)

Remark 0.3 In general $(\mathbb{R}^{m \times n}, \cdot)$ will not be a group, since not every matrix has a multiplicative inverse. This is clear if $m \neq n$. However, $(\mathbb{R}^{m \times n}, +, \cdot)$, is a ring.

For any matrix $A \in \mathbb{R}^{m \times n}$, we may define another matrix, the **transpose** of A, which is the matrix $A^T \in \mathbb{R}^{n \times m}$ whose entries are given by $A_{ji}^T = A_{ij}$, for $1 \le i \le m, 1 \le j \le n$. That is,

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \longrightarrow A^T = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ \vdots & \vdots & \cdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$
(0.9)

Indeed, we may view the transpose of A as a function, $T : \mathbb{R}^{m \times n} \to \mathbb{R}^{n \times m}$, which we will see is a linear transformation.

The **trace** of a square matrix $A \in \mathbb{R}^{n \times n}$ is a function $\text{tr} : \mathbb{R}^{n \times n} \to F$ given by

$$\operatorname{tr}(A) = a_{11} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$
 (0.10)

i.e. by summing the diagonal entries of A.

A square matrix $A \in \mathbb{R}^{n \times n}$ is said to be **invertible** if there exists a matrix $B \in \mathbb{R}^{n \times n}$ such that AB = I. That is, A is invertible if it is a unit in the ring $\mathbb{R}^{n \times n}$. The **set of all** $n \times n$ **invertible matrices**, when considered as a *multiplicative group* under the matrix multiplication map, i.e. the group of units of the ring $\mathbb{R}^{n \times n}$, is called the **general linear group**, and denoted $GL(n, \mathbb{R})$,

$$\operatorname{GL}(n,\mathbb{R}) := \{A \in \mathbb{R}^{n \times n} \mid A \text{ is invertible}\}$$
 (0.11)

$$= M_n(\mathbb{R})^{\times} = (\mathbb{R}^{n \times n})^{\times} \tag{0.12}$$

The notation $\operatorname{GL}_n(\mathbb{R})$ is also used. The identity element in $\operatorname{GL}(n,\mathbb{R})$ is the **identity matrix** $I_n \in \mathbb{R}^{n \times n}$ is given by $(I_n)_{ij} := \delta_{ij}$, that is

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

0.0.2 Special Matrices

To study matrices in further detail, we will need to perform **elementary row and column oper**ations on them. If $A \in \mathbb{R}^{m \times n}$, any one of the following operations on the rows or columns of A is called an elementary row (resp. column) operation

- **type 1**: interchanging any two rows (resp. columns) of A
- type 2: multiplying any row (resp. column) of A by a nonzero scalar
- type 3: adding any scalar multiple of a row (resp. column) of A to another row/column

Note that $E \in \mathbb{R}^{m \times m}$ if it performs a row operation, in which case it left-multiplies A, and $E \in \mathbb{R}^{n \times n}$ if it performs a column operation, in which case it right-multiplies A. That is, EA defines a row operation, and AE defines a column operation.

We will need the Kronecker delta function

$$\delta: \mathbb{N} \times \mathbb{N} \to \{0, 1\} \tag{0.13}$$

in what follows, which is given by

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
(0.14)

Using the Kronecker delta function we list here some other important special matrices. These matrices can be defined over any field F, not just the field of reals \mathbb{R} . Indeed, they may be defined over any ring R, such as the ring of polynomials F[x] over a field F or indeed the ring of matrices $F^{n \times n}$.

- 1. A **diagonal matrix** $A \in F^{n \times n}$ is said to be diagonal if $i \neq j \implies A_{ij} = 0$.
- 2. An upper triangular $A \in F^{n \times n}$ satisfies $i > j \implies A_{ij} = 0$.
- 3. A symmetric matrix is a square matrix $A \in F^{n \times n}$ which satisfies $A = A^T$.
- 4. A skew-symmetric matrix $A \in F^{n \times n}$ satisfies $A = -A^T$.
- 5. An **idempotent** matrix $A \in F^{n \times n}$ satisfies $A^2 = A$. Such a matrix has only 0 and 1 as eigenvalues.
- 6. A **nilpotent** matrix $A \in F^{n \times n}$ is one for which there is some $k \in \mathbb{N}$ such that $A^k = O$. Such a matrix has only 0 as an eigenvalue.
- 7. A scalar matrix $A \in F^{n \times n}$ is of the form $A = \lambda I_n$ for some scalar $\lambda \in F$. All its diagonal entries are equal, and non-diagonal entries are 0.
- 8. An **incidence matrix** is a square matrix in which all the entries are either 0 or 1, and for convenience, all the diagonal entries are 0.
- 9. Two matrices $A, B \in F^{m \times n}$ are said to be **row equivalent matrices** if either one can be obtained from the other by a series of elementary row operations, that is by left-multiplication be a sequence of elementary matrices. Row equivalence is an equivalence relation on $F^{m \times n}$.
- 10. Two column equivalent matrices $A, B \in F^{m \times n}$ are such that one can be obtained from the other by a series of elementary column operations, that is by right-multiplication by a sequence of elementary matrices. Column equivalence is an equivalence relation on $F^{m \times n}$.

- 11. Two matrices $A, B \in F^{m \times n}$ are said to be **equivalent matrices** if there exist invertible matrices $P \in GL(m, F)$ and $Q \in GL(n, F)$ such that $B = PAQ^{-1}$, that is if A and B are both (or either) row and column equivalent.
- 12. Two square matrices $A, B \in F^{n \times n}$ are said to be **similar matrices** if $\exists P \in GL(n, F)$ invertible such that $B = PAP^{-1}$.

The **direct sum of square matrices** B_1, B_2, \ldots, B_k are square matrices (not necessarily of equal dimension) is defined recursively as follows: if $B_1 \in F^{n \times n}$ and $B_2 \in F^{m \times m}$, the direct sum of B_1 and B_2 is given by

$$B_1 \oplus B_2 = A \in F^{m+n \times m+n}, \quad A_{ij} = \begin{cases} (B_1)_{ij} & \text{for } 1 \le i, j \le m \\ (B_2)_{i-m,j-m} & \text{for } m+1 \le i, j \le m+n \\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{pmatrix} B_1 & O \\ O & B_2 \end{pmatrix}$$

The definition then extends recursively,

$$\bigoplus_{i=1}^{k} B_{i} = B_{1} \oplus B_{2} \oplus \dots \oplus B_{k}$$

$$:= (B_{1} \oplus B_{2} \oplus \dots \oplus B_{k-1}) \oplus B_{k}$$

$$= \begin{pmatrix} B_{1} & O & \cdots & O \\ O & B_{2} & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & B_{k} \end{pmatrix}$$

Analogous definitions apply to matrices over a ring R. This definition will play an important role in the Jordan and rational canonical forms of matrices and linear transformations, where we will need to decompose a space into a direct sum of T-invariant subspaces, each with an associated matrix representation of T restricted to that subspace.