Matrices

0.0.1 Matrices

A real m x n matrix is a rectangular array

a11 a2 -+ Gln
a1 QA2 -+ A2p (0 1)
Am1 Am2 Tt Amn

The diagonal entries are the a;; with ¢ = j, i.e. the a;; the ith row is composed of entries of
the form a;1, a2, ..., @i, and the jth column is composed of entries of the form ay;, asj,. .., am;.
(More generally, we may take the entries a;; from an abstract field F' or a ring R, but for now we
suppose F' = R, the real numbers.)

The set of real m x n matrices is denoted
Mpn(R) or Mpxn(R) or R™*" (0.2)

Similarly, the set of m x n matrices over a ring R is denoted M, ,(R) and M,,x,(R), etc., and
likewise with matrices over a field F. In the case that m = n we also write M, (R), and we call a
matrix in M, (R) a square matrix.

Example 0.1 For ezample, M3(R) is the set of all real 3 X 3 matrices, and Ms 7(27Z) is the set of
all 5 x 7 matrices with even integer entries. |

We can view these arrays as mathematical objects and impose on the set R"*™ of them some
algebraic structure. First, we define addition in R"*",

+ . Rmxn X Rmxn N Ran (03)
as follows: if A, B € R™*", we define + componentwise to be the matrix

ail o Gip bin -+ bin ain+bin 0 amn +big

AtB=| o a o = (0.4)
am1  *°° Omn bml o bmn am1 + bml St Qmp Tt bmn

Remark 0.2 Note that this will make (]Rmxn, +) into an abelian group, abelianness coming from

the abelianness of the additive group (R, +)—that is, addition of real numbers is commutative, and
since matrixz addition is defined componentwise, it, too, is commutative. |

The operation of scalar multiplication on M, ,(R),
st R x R™*™ — R™X? (0.5)
is also defined componentwise: if ¢ € R and A € R™*™, then cA is the matrix

aixz - Gln cayx -+ CAin

cA=c
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Am1 s OGmn Cam1 s Chmn



In addition, we can endow the cartesian product of two (possibly different) sets of matrices with a
binary matrix multiplication function,

o RN x RMXP _y RMXP (0.7)

taking an m x n matrix A and an n X p matrix B and giving an m X p matrix C' — as long as n is a
common integer for R™*™ and R"™*P, otherwise the operation is undefined. Formally, if A € R™*™,
B € R"*P_ then - is denoted by juxtaposition and is given by

aix - Al by - b1p Zzl aigbpy - Zzzl alkbkp
AB = Lo : N S : : (0.8)

n n
m1 ** OGmn bnl te bnp Zk:l amkbkl T Zk:l amkbk:p

Remark 0.3 In general (Rmxn, ) will not be a group, since not every matriz has a multiplicative
inverse. This is clear if m # n. However, (R’”X", =+, -), s a Ting. [ |

For any matrix A € R"™*", we may define another matrix, the transpose of A, which is the matrix
AT € R™™ whose entries are given by AjTi = A;j, for 1 <i<m, 1 <35 <n. That is,
a1 a2 - Gln ailr a1t Gl
A=1 — AT= (0.9)
Aml  Am2 ot Gmn A1n Q2n s Qmn

Indeed, we may view the transpose of A as a function, T' : R™>*" — R™*"™  which we will see is a
linear transformation.

The trace of a square matrix A € R"*™ is a function tr : R"*™ — F given by
tI‘(A) =ay] +- -+ app = Zaii (010)
i=1

i.e. by summing the diagonal entries of A.

A square matrix A € R™ " is said to be invertible if there exists a matrix B € R™*™ such that
AB = I. That is, A is invertible if it is a unit in the ring R™*". The set of all n x n invertible
matrices, when considered as a multiplicative group under the matrix multiplication map, i.e. the
group of units of the ring R®*" is called the general linear group, and denoted GL(n,R),

GL(n,R) := {AeR"™"™| A is invertible} (0.11
= M,(R)* = R""™)* (0.12)

The notation GL,(R) is also used. The identity element in GL(n,R) is the identity matrix
I, € R™" is given by (I,);; := d;;, that is

1 0 0

0 1 0
In: .

0 0 1



0.0.2 Special Matrices

To study matrices in further detail, we will need to perform elementary row and column oper-
ations on them. If A € R™*" any one of the following operations on the rows or columns of A is
called an elementary row (resp. column) operation

type 1: interchanging any two rows (resp. columns) of A

type 2: multiplying any row (resp. column) of A by a nonzero scalar

type 3: adding any scalar multiple of a row (resp. column) of A to another row/column
Note that £ € R™*™ if it performs a row operation, in which case it left-multiplies A, and E € R™*™

if it performs a column operation, in which case it right-multiplies A. That is, EA defines a row
operation, and AE defines a column operation.

We will need the Kronecker delta function

§:NxN - {0,1} (0.13)
in what follows, which is given by
1o i
d=1. oo (0.14)
0 if i#j

Using the Kronecker delta function we list here some other important special matrices. These
matrices can be defined over any field F', not just the field of reals R. Indeed, they may be defined
over any ring R, such as the ring of polynomials F[x] over a field F' or indeed the ring of matrices
F’ﬂX’ﬂ’

1. A diagonal matrix A € F"*" is said to be diagonal if i # j = A;; =0.
2. An upper triangular A € F"*" satisfies i > j = A;; =0.

A symmetric matrix is a square matrix A € F™*" which satisfies A = AT

- W

A skew-symmetric matrix A € F"*" satisfies A = —A7T.

5. An idempotent matrix A € F™*" satisfies A2 = A. Such a matrix has only 0 and 1 as
eigenvalues.

6. A nilpotent matrix A € F™*" is one for which there is some k € N such that A* = O. Such
a matrix has only 0 as an eigenvalue.

7. A scalar matrix A € F™*™ is of the form A = AI, for some scalar A € F. All its diagonal
entries are equal, and non-diagonal entries are 0.

8. An incidence matrix is a square matrix in which all the entries are either 0 or 1, and for
convenience, all the diagonal entries are 0.

9. Two matrices A, B € F"™*™ are said to be row equivalent matrices if either one can be
obtained from the other by a series of elementary row operations, that is by left-multiplication
be a sequence of elementary matrices. Row equivalence is an equivalence relation on F™*".

10. Two column equivalent matrices A, B € F™*" are such that one can be obtained from
the other by a series of elementary column operations, that is by right-multiplication by a
sequence of elementary matrices. Column equivalence is an equivalence relation on F™*",



11. Two matrices A, B € F"™*™ are said to be equivalent matrices if there exist invertible
matrices P € GL(m, F) and Q € GL(n, F) such that B = PAQ ™1, that is if A and B are both
(or either) row and column equivalent.

12. Two square matrices A, B € F™*™ are said to be similar matrices if 3P € GL(n, F) invertible
such that B = PAP~.

The direct sum of square matrices Bj, Bo, ..., By are square matrices (not necessarily of equal
dimension) is defined recursively as follows: if By € F™*™ and By € F™*™  the direct sum of B
and By is given by

(Bl)ij for 1 S Z,j S m
Bi®By = AeFmtmin s A= (Ba)icmjm form+1<ij<m+n
0 otherwise
_ By O
o O By
The definition then extends recursively,
k
BB = BoBo--- OB
i=1
= (B1®By®---®Bj_1)® By,
B O -+ O
O By -+ O
O O --- B

Analogous definitions apply to matrices over a ring R. This definition will play an important role in
the Jordan and rational canonical forms of matrices and linear transformations, where we will need
to decompose a space into a direct sum of T-invariant subspaces, each with an associated matrix
representation of T restricted to that subspace.
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