
Formula Sheet

1 The Three Defining Properties of Real Numbers

For all real numbers a, b and c, the following properties hold true.

1. The commutative property:

a + b = b + a

ab = ba

2. The associative property:

a + (b + c) = (a + b) + c

a(bc) = (ab)c

3. The distributive property:

a(b + c) = ab + ac

These properties define (almost) all other facts about real numbers, and chief among them are the
formulas we give below.

Remember that the distributive property is an equality between two expressions. Going from the
left expression to the right expression is called distributing a over the sum b + c, while going from
the right expression to the left expression is called factoring a out, and a is called the common
factor of ab and ac.

2 Important Formulas

Here are the factoring formulas you should know by now: for any real numbers a and b,

(a + b)2 = a2 + 2ab + b2 Square of a Sum

(a− b)2 = a2 − 2ab + b2 Square of a Difference

a2 − b2 = (a− b)(a + b) Difference of Squares

a3 − b3 = (a− b)(a2 + ab + b2) Difference of Cubes

a3 + b3 = (a + b)(a2 − ab + b2) Sum of Cubes
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And here are the exponential rules you should know: for any real numbers a and b, and any
rational numbers

p

q
and

r

s
,

ap/qar/s = ap/q+r/s Product Rule

= a
ps+qr

qs

ap/q

ar/s
= ap/q−r/s Quotient Rule

= a
ps−qr

qs

(ap/q)r/s = apr/qs Power of a Power Rule

(ab)p/q = ap/qbp/q Power of a Product Rule(a

b

)p/q

=
ap/q

bp/q
Power of a Quotient Rule

a0 = 1 Zero Exponent

a−p/q =
1

ap/q
Negative Exponents

1
a−p/q

= ap/q Negative Exponents

Remember, there are different notations:

q
√

a = a1/q

q
√

ap = ap/q = (a1/q)p

For example, the power of a product rule in radical notation would be

q
√

(ab)p = q
√

ap q
√

bp

3 Quadratic Formula

Finally, the quadratic formula: if a, b and c are real numbers, then the quadratic polynomial
equation

ax2 + bx + c = 0

has (either one or two) solutions

x =
−b±

√
b2 − 4ac

2a

The discriminant is the number under the square root, b2 − 4ac.

1. If b2 − 4ac > 0, there are two real roots, possibly (indeed quite likely) irrational.

2. If b2 − 4ac = 0, there is one real root, namely −b/2a, and it is rational if a and b are.

3. If b2 − 4ac < 0, there are two complex roots, so no real roots.
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4 Points and Lines

Suppose you have two points in the plane,

P = (x1, y1), Q = (x2, y2)

What information can you get from them? Three things:

1. The distance between them, d(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2.

2. The coordinates of the midpoint between them, M =
(

x1 + x2

2
,
y1 + y2

2

)
.

3. The slope of the line through them, m =
y2 − y1

x2 − x1
=

rise
run

.

This information comes in handy when doing line problems, especially the slope part. As for lines,
remember, they can be represented in three different ways:

Standard Form ax + by = c

Slope-Intercept Form y = mx + b

Point-Slope Form y − y1 = m(x− x1)

where a, b, c are real numbers, m is the slope, b (different from the standard form b) is the y-intercept,
and (x1, y1) is any fixed point on the line. The first one is basically only useful for finding the x- and
y-intercepts (by letting y = 0 and x = 0, respectively). The second is useful for graphing and finding
the x- and y-intercepts (also by letting y = 0 and x = 0, respectively). The third is useful for coming
up with the equation of a line given only information about a point and a slope, or equivalently, by
(3), given information about two points.

Suppose two lines `1 and `2 have slope-intercept forms y = m1x + b1 and y = m2x + b2. Then
`1 and `2 are parallel, denoted `1‖`2, if their slopes are the same, that is if m1 = m2, and they

perpendicular, denoted `1 ⊥ `2, if their slopes are negative reciprocals, that is if m1 = − 1
m2

(or

equivalently m2 = − 1
m1

).

Example 4.1 Suppose I’m given two points

P = (22, 12), Q = (4,−15)

and asked to come up with the equation of the line passing through them and then graph it. In order
to come up with the equation, I need the slope. I can’t do anything without that. Luckily, I can get
the slope using (3):

m =
−15− 12

4− 22
=
−27
−18

=
3
2

Now I’ve got a couple of points and I’ve got a slope, so I naturally use point-slope to give a rough-
draft version of the equation (the final draft will be slope-intercept here, since that’s what I need to
graph it): picking (22, 12) for no particular reason, I get

y − 12 =
3
2

(x− 22)

Simplifying gives

y =
3
2
x− 21
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This I can graph: I go to (0,−21), because my y-intercept is −21, which means x = 0 there, and
plot a point there. Then I go up three and over two and plot a point there (i.e. at (2,−18)), then I
connect the dots, and I’m done.

x

y

14

−21
(2,−18)

P = (22, 12)

Q = (4,−15)

5
5

−5

5 Circles

We know from Euclidean geometry that a circle, sometimes denoted
⊙

, is by definition the set of
all points X := (x, y) a fixed distance r, called the radius, from another given point C = (h, k),
called the center of the circle, ⊙

def= {X | d(X, C) = r} (5.1)

Using the distance formula (1) and the square root property, d(X,C) = r ⇐⇒ d(X, C)2 = r2, we
see that this is precisely ⊙

def= {(x, y) | (x− h)2 + (y − k)2 = r2} (5.2)

which gives the familiar equation for a circle.

Example 5.1 Suppose C = (−7, 2) and r = 11. The equation of this circle is

(x + 7)2 + (y − 2)2 = 121

and it’s graph is

x

y

(−7, 2)

r = 11

5
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6 Functions

An ordered pair (a, b) of numbers a and b (or other things, perhaps matrices or polynomials, or
whatever) is like the set {a, b} except that we’re keeping tabs on the positions of a and b. One comes
first, the other comes second.

A cartesian product A×B of two sets A and B is the set of all ordered pairs (a, b), i.e.

A×B = {(a, b) | a ∈ A, b ∈ B}

A relation on A × B is any subset of A × B. If R = A′ × B′ is a relation on A × B, then the set
A′ is called the domain, and the set B′ the range of the relation. I.e. the domain is the set of first
coordinates, and the range is the set of second coordinates of R. The set B is called the codomain
of the relation.

Example 6.1 The set of points a distance greater than 1 from (0, 0) is a relation on R×R, since
that’s a subset of the plane. An ellipse in the plane is a relation on R × R. Other examples are
equality =, strict inequality < and partial inequality ≤ on R×R. For example, if we were to graph =,
we’d get the line through the origin with slope of 1, i.e. y = x. Sometimes we have special notation
for certain relations. For example, we usually write a = b or a < b or a ≤ b instead of (a, b) ∈=
or (a, b) ∈< or (a, b) ∈≤, even though <, for example, really means a subset of the plane, i.e. set
{(a, b) | a is strictly less than b}.

The most important relation by far is the function. A function f : A → B is actually a relation
on A×B, that is, it is a collection of ordered pairs (a, b) in A×B. We employ the special function
notation f(a) = b instead of (a, b), to make sure we understand we’re dealing with a function here and
not just any relation. A function’s ordered pairs f(a) = b must satisfy a very important requirement:
the “vertical line test”, which is that if we run a vertical line across the graph of f , we can only
hit one point at a time with it. In words, the vertical line test means there are no two points (a, b)
and (a, c) in the relation f with a 6= c. Remember, an arbitrary relation f is just a bunch of ordered
pairs, so it can happen that (a, b) and (a, c) with different b and c are in f . But then we just say f
is not a function. Whatever else it is, it’s not a function. This is in fact the essence of a function.
We want functions to avoid having both f(a) = b and f(a) = c for b 6= c.

Given a real function f , i.e. a subset of R×R, and given two ordered pairs (x1, y1) and (x2, y2) of f
(i.e. f(x1) = y1 and f(x2) = y2), we define the average rate of change of f as x varies between
x1 and y1 as the quotient

y2 − y1

x2 − x1

This is a lot like the slope between two points. In fact, it is the slope between the two points, except
that in this context we pick the points to lie on the graph of f . The reason we call it average is
we’re ignoring all the variation of f between x1 and x2, and we’re just getting to the bottom line,
the net change in y between x1 and x2. This is a gross oversimplification of f , but it’s much easier
to see and compute than all of f between those x’s.

Sometimes we want to use a formula to describe the behavior of a function f . Typically, this is
an algebraic expression, but it need not always be so. And it is frequently, though not always, in
one variable. In such a case, we usually denote the variable by x, and we write f(x) to denote that
the function depends on the variable x, which is appropriately called the independent variable.
Since to each a in the domain of f we assign one, and only one, b, such that f(a) = b, we say that b
depends on a. If we have a formula for f , then we assign a variable y to x, satisfying y = f(x), and
we say y depends on x, or y is the dependent variable.
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For example,
f(x) = x2

is the parabola. The formula here is x2. This notation is shorthand for the relation

{(x, y) | y = x2, x ∈ R}

i.e.
{(a, a2) | a ∈ R}

We often want to graph the function, and this just means plotting the relation in the plane A× B
(usually the x-y plane). An easy way to graph a function g is by transforming the graph of a known
function f in such a way as to get g. To do this, we need to know that the graph of a function can
be transformed in six different ways:

1. Vertical translation by k:
f(x) 7→ f(x)± k

If +, the shift is upward, if −, it’s downward.

2. Horizontal translation by h:
f(x) 7→ f(x± h)

If +, the shift is to the left, if −, it’s to the right.

3. Reflection about the x-axis:
f(x) 7→ −f(x)

4. Reflection about the y-axis:
f(x) 7→ f(−x)

5. Vertical stretch or compression:

f(x) 7→ af(x)

where a > 0.

(a) If 0 < a < 1, this is a vertical compression.
(b) If 1 < a, this is a vertical stretch.

6. Horizontal stretch or compression:

f(x) 7→ f(ax)

where a > 0.

(a) If 0 < a < 1, this is a horizontal stretch.
(b) If 1 < a, this is a horizontal compression.

A function is even if it’s symmetric about the y-axis, in which case it must satisfy f(x) = f(−x).
The parabola f(x) = x2 is an example. A function f is odd if it is symmetric about the origin,
that is if it satisfies f(x) = −f(x). It is entirely possible that a function is neither even nor odd, for
example f(x) = x2 + x3.

A function may be increasing, decreasing, or constant. It’s increasing if

x1 < x2 =⇒ f(x1) < f(x2)

that is if f preserves the order relations of points, or, graphically, if it goes up from left to right. It
is decreasing if

x1 < x2 =⇒ f(x1) > f(x2)

that is if f reverses the order relations of points, or, graphically, if it goes down from left to right.
It is constant if it never increases or decreases. Graphically, this would be a horizontal line.
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