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Abstract

One of the reasons the chain rule is so important is that we often want to change
coordinates in order to make difficult problems easier by exploiting internal symmetries
or other nice properties that are hidden in the Cartesian coordinate system. We will
see how this works for example when trying to solve first order linear partial differential
equations or when working with differential equations on circles, spheres and cylinders. It
is one of the achievements of vector calculus that it has a develped language for describing
all of these different aspects in a unified way, in particular using coordinate changes and
differentiating functions under these coordinate changes to provide simplified expressions.
The key idea is the following: if ϕ : Rn → Rn is a change-of-coordinates function and
f : Rn → R is a differentiable function, then instead of working with Df(x), which may
be difficult in practice, we may work with D(f ◦ ϕ)(x) = Df(ϕ(x))Dϕ(x).

1 Different Coordinate Systems in R2 and R3

Example 1.1 Let’s start with something simple, like rotating our coordinates through an
angle of θ. In a previous example, in the section on differentiability, we showed that a rotation
through θ is a linear function R : R2 → R2 which operates on vectors (x, y), written here as
column vectors, by left multiplying them by the rotation matrix R,(

u
v

)
= R

(
x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
(1.1)

x

y

θ

u

v

x =
(x,
y)

=
(u,
v)

In terms of the component functions of R, we have

u = R1(x, y) = x cos θ − y sin θ

v = R2(x, y) = x sin θ + y cos θ

We have thus introduced new rotated coordinates (u, v) in R2. �
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Example 1.2 There are other coordinate systems in R2 besides rotated Cartesian coordi-
nates, but which are still “linear” in a sense. Consider for example two vectors u and v in
R2 which are not scalar multiples of each other (i.e. they are not collinear). Then I claim
that any vector x in R2 can be described as a scalar multiple of u plus a scalar multiple of v
(hence they describe a coordinate system, telling you how to find x by going some way in the
direction of u then some way in the direction of v, much like in regular Cartesian coordinates
we go some way in the direction of i and some way in the direction of j). Let’s see how this
works. Let

u = (a, b) and v = (c, d)

and suppose they are not scalar multiples of each other (i.e. (c, d) 6= k(a, b) = (ka, kb) for any
k). Then consider any x = (x, y). To say that x = k1u + k2v is to say

(x, y) = k1(a, b) + k2(c, d) =
(
k1a+ k2c, k1b+ k2d

)
which, if we want to discover what k1 and k2 are, means we have to solve a system of two
equations in two unknowns,

x = ak1 + bk2

y = bk1 + dk2

(Recall that here a, b, c, d and x, y are all known, only k1 and k2 are unkown!) OK, well, we
know how to solve such a system, namely add −c/a times the first equation to the second
equation, {

x = ak1 + bk2

y = ck1 + dk2
=⇒


x = ak1 + bk2

− c
a
x+ y = 0k1 +

(
−bc
a

+ d
)
k2

and then solve the second equation for k2,

k2 =
ay − cx

a
· a

ad− bc
=
ay − cx
ad− bc

Finally, substitute k2 back into either equation and solve the result for k1. For example,
substitute it into the first equation:

x = ak1 + bk2 = ak1 + b

(
ay − cx
ad− bc

)
=⇒ k1 =

x− b
(
ay−cx
ad−bc

)
a

=
dx− by
ad− bc

Thus,

x = k1u + k2v =

(
dx− by
ad− bc

)
u +

(
ay − cx
ad− bc

)
v (1.2)

If we want to define a function ϕ : R2 → R2 changing ij-coordinates to uv-coordinates, it is
the function sending (x, y) to (k1, k2), namely

ϕ : R2 → R2

(k1, k2) = ϕ(x, y) =

(
dx− by
ad− bc

,
ay − cx
ad− bc

)
(1.3)

We can express this in matrix notation (and this explains the “linearity” of the uv-coordinates):(
k1
k2

)
= ϕ

(
x
y

)
=

1

ad− bc

(
d −b
−c a

)(
x
y

)
(1.4)

�
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Example 1.3 Let’s try this out with some specific vectors. Let u = (1, 1) and v = (1, 2)
and let x = (3, 5).

x

y
k1

k2

u

v

Let’s find k1 and k2 such that x = k1u + k2v, and check that the above formula works. Well,

k1 =
dx− by
ad− bc

=
2 · 3− 1 · 5
1 · 2− 1 · 1

= 1

k2 =
ay − cx
ad− bc

=
1 · 5− 1 · 3
1 · 2− 1 · 1

= 2

and indeed

k1u + k2v = 1(1, 1) + 2(1, 2) = (1, 1) + (2, 4) = (1 + 2, 1 + 4) = (3, 5) = x

And we can do this for any x in R2. �

There are of course other coordinate systems, and the most common are polar, cylindrical
and spherical. Let us discuss these in turn.

Example 1.4 Polar coordinates are used in R2, and specify any point x other than the
origin, given in Cartesian coordinates by x = (x, y), by giving the length r of x and the angle
which it makes with the x-axis,

r = ‖x‖ =
√
x2 + y2 and θ = arctan

(
−y
x

)
(1.5)

Notice that the domain of arctan is naturally
(
−π2 ,

π
2

)
, so this set of coordinates only works

on the right half-plane {(x, y) |x > 0}. We can adjoin the y-axis and the left half of the plane,
but there we have to define θ differently. We leave the tedious details to the reader. We then
get the composite function

ϕ : R2 → R2

(r, θ) = ϕ(x, y) =

(√
x2 + y2, arctan

(
−y
x

)) (1.6)

The thing to note is that we can go back and forth between Cartesian and polar coordinates.
The reverse direction, from (r, θ) to (x, y) is

ψ = ϕ−1 : R2 → R2

(x, y) = ψ(r, θ) =
(
r cos θ, r sin θ

) (1.7)
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We usually see this in the form,

x = r cos θ and y = r sin θ (1.8)

r

θ

x

y

x = (x, y) = (r cos θ, r sin θ)

Example 1.5 Cylindrical coordinates are like polar coordinates, but we include a third
dimension as well, which we call z (we may as well identify it with the z-coordinate in Carte-
sian coordinates, though we can just as well identify it with any line through the origin). Thus,
our change-of-coordinates functions changing Cartesian into cylindrical coordinates is

ϕ : R3 → R3

(r, θ, z) = ϕ(x, y, z) =

(√
x2 + y2, arctan

(
−y
x

)
, z

)
(1.9)

and its inverse is the map

ψ = ϕ−1 : R3 → R3

(x, y, z) = ψ(r, θ, z) =
(
r cos θ, r sin θ, z

) (1.10)

�

x

y

z
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Example 1.6 Spherical coordinates are used when working with a system having inherent
spherical symmetry, for example the gravitational or the electric field surrounding a point
particle.

x

y

z

θ

ϕ

x′

y′

z′

θ′

ϕ′

Figure 1.1: Spherical Coordinates

The basic idea behind spherical coordinates is that a point x = (x, y, z) can be entirely deter-
mined not only by the coordinates x,y and z in the coordinate directions i, j and k, but by it’s
length

ρ = ‖x‖

and two angles, one between x and k (the z-axis),

ϕ = arccos

(
x · k

‖x‖‖k‖

)
= arccos

(z
ρ

)
and one between the projection of x onto the x, y-plane and the x-axis, i.e. between (x, y, 0)
and i = (1, 0, 0),

θ = arccos

(
(x, y, 0) · (1, 0, 0)

‖(x, y, 0)‖‖(1, 0, 0)‖

)
= arccos

(
x√

x2 + y2

)
This could also be described as the arctangent of y/x, if we draw a right triangle with legs x

and y and hypotenuse
√
x2 + y2

θ = arctan

(
y

x

)
and there is a similar expression involving arcsine. This gives us a function from R3 to R3,
converting Cartesian coordinates into spherical coordinates:

C : R3 → R3

(ρ, θ, ϕ) = C(x, y, z) =

(
‖x‖, arccos

( z

‖x‖

)
, arctan

(
y

x

))
(1.11)
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In components this is

ρ = ‖x‖

θ = arccos
( z

‖x‖

)
ϕ = arctan

(
y

x

)
= arccos

(
x√

x2 + y2

)
= arcsin

(
y√

x2 + y2

) (1.12)

The reverse transformation, S = C−1, converting spherical to Cartesian coordinates, is

S = C−1 : R3 → R3

(x, y, z) = S(ρ, θ, ϕ) =
(
ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ

) (1.13)

which, in components is

x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ

(1.14)

Refer to Figure 1.6 for the derivation to follow: First, note that in that figure, the projection
of x = (x, y, z) onto the xy-plane is (x, y, 0), so θ is easy to compute using the triangle

y

x

√
x2 + y2 = r

θ

(x, y, 0) = (r cos θ, r sin θ, 0)

x

y

Indeed, θ is easily seen to be the arctangent of y/x, or the arccosine of x/
√
x2 + y2, or the

arcsine of y/
√
x2 + y2. In fact, in the xy-plane we have the standard polar coordinates. Hence

we also have x = r cos θ and y = r sin θ.

Now let’s look at the 3D picture. The vertical triangle has horizontal leg r =
√
x2 + y2,
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vertical leg z, and hypotenuse ρ =
√
r2 + z2 =

√
x2 + y2 + z2 = ‖x‖,

y

x

z

r

ϕ ϕ
ρ

z

From this picture we can see that r
ρ = sinϕ, so that r = ρ sinϕ. We can substitute this

expression into our earlier expressions for x and y in polar coordinates:

x = r cos θ = ρ sinϕ cos θ

y = r sin θ = ρ sinϕ sin θ

Finally, z
ρ = cosϕ, so we also have

z = ρ cosϕ �

2 New Coordinates and the Chain Rule

What are coordinates good for? The answer is they are basically the most important thing
in vector calculus, because they are precisely what simplifies complicated problems. The only
difficulty in switching to more convenient coordinates is that you have to then translate the
whole problem you’re looking at into these new coordinates, and there may well be need to
use the chain rule. The reason is most interesting problems in physics and engineering are
equations involving partial derivatives, that is partial differential equations. These equations
normally have physical interpretations and are derived from observations and experimenta-
tion. Once handed to us, however, we must treat the problems mathematically, and our
purpose here is to elucidate some of the basic methods of this mathematical treatment. Let
us look at some examples.

Example 2.1 Suppose you are asked to solve the following first order linear partial dif-
ferential equation,

3ux + 4uy = 0 or, in other notation, 3
∂u

∂x
+ 4

∂u

∂y
= 0

A solution of this equation is a function u : R2 → R, z = u(x, y), whose partial derivatives
satisfy this equation at all points (x, y) in the plane. How are we to solve such a problem?

Well, the first thing to notice is that what we have here is in fact a matrix (or dot) product
on the left hand side, namely

3ux + 4uy =
(
ux uy

)(3
4

)
= Du · v
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where v = (3, 4) is thought of as a column vector here. But we also know that this product is
precisely the directional derivative of u in the direction of v,

Dvu = Du · v = 3ux + 4uv

Thus, our original equation boils down to solving the directional derivative equation

Dvu = 0

Well, what does it say about u that it’s directional derivative in the direction of v = (3, 4) is
0? It means u is not changing in that direction, at any point in R2! Pick a line parallel to v,
that is having slope 4/3,

y =
4

3
x+ b or 4x− 3y = −3b

where b is arbitrary. Then, on this line, u will be constant. The only change in u will occur
if we move from one line to another, that is in a direction perpendicular to v (for we note,
of course, that the equation of the line can be expressed as a dot product, the vector (4,−3)
with the vector (x, y), and the vector (4,−3) is orthogonal to v!). Thus, any differentiable
function f : R→ R taking η = 4x− 3y as input will work for us, so a general solution is

u = f ◦ g, whereg : R2 → R, g(x, y) = 4x− 3y, and f : R→ R is arbitrary

If we chose coordinates as in Example 1.2 in such a way that one of the coordinate vectors
were v, then the fact that Dvu = 0 would mean that it’s partial derivative with respect to that
new coordinate would be zero, always! Consequently, we would only have to worry about the
other partial of u, in the other coordinate direction. Let’s call the other coordinate w, which
we may as well pick to be orthogonal to v. Thus, if say ξ and η are our new coordinates,
meaning that

ξv + ηw = (x, y)

for all (x, y) in R2, then our original partial differential equation would simplify to

3ux + 4uy = 0 =⇒ uη = 0

Let us verify that this is indeed a solution: Let u(x, y) = (f ◦ g)(x, y) = f(4x− 3y). Then by
the chain rule we have

3ux + 4uy = 3
∂

∂x
f(4x− 3y) + 4

∂

∂y
f(4x− 3y)

= 3f ′(4x− 3y) · 4 + 4f ′(4x− 3y) · (−3)

= (12− 12)f ′(4x− 3y)

= 0

For example, we could choose f(t) = et, or f(t) = sin t, or f(t) = t3 + 5, or anything we want
as long as it’s differentiable on R! In these cases, u(x, y) = e4x−3y, or u(x, y) = sin(4x− 3y),
or u(x, y) = (4x− 3y)3 + 5 are all solutions.

There is another way to view this problem which highlights the change of coordinates. This
still involves the observation that u is constant along the lines 4x− 3y = c. The idea, then, is
to pick coordinates, one parallel to v, the other perpendicular to v, for then the partial in one
direction will be identically zero and the result will be a simpler partial differential equation.
Let us explain.
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Define new coordinates

ξ = 3x+ 4y

η = 4x− 3y

Note that ξ is in the direction of v, and η is perpendicular to it. If we solve this system for
x and y this will be clearer:

x =
3

25
ξ +

4

25
η

y =
4

25
ξ − 3

25
η

and therefore

(x, y) =

(
3

25
ξ +

4

25
η,

4

25
ξ − 3

25
η

)
= ξ

1

25
(3, 4) + η

1

24
(4,−3)

so (x, y) is expressed as a multiple of v plus a multiple of w, the vector orthogonal to v. What
happens when we consider u(ξ, η), that is the expression of u in these new coordinates? Well,
let’s find out by computing some partials:

ux = uξξx + uηηx = 3uξ + 4uη

uy = uξξy + uηηy = 4uξ − 3uη

and consequently,

0 = 3ux + 4uy = 3(3uξ + 4uη) + 4(4uξ − 3uη) = 25uξ + (12− 12)uη = 25uξ

Therefore, dividing by 25 gives
uξ = 0

a much simpler partial differential equation than 3ux + 4uy = 0! Indeed, we can solve this by
integrating with respect to ξ. When we do, since u is a function of ξ and η, we will get an
arbitrary differentiable function of η,

u(ξ, η) = f(η)

Converting back to (x, y) coordinates now we see that

u(x, y) = f(4x− 3y) �

Exercise 2.2 Show that any homogeneous linear partial differential equation with
constant coefficients (the technical term for these things),

aux + buy = 0

has a general solution given by
u(x, y) = f(bx− ay)

for any twice differentiable function f : R→ R. �
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Exercise 2.3 Show that any inhomogeneous linear partial differential equation with
constant coefficients (the technical term for these things),

aux + buy = c

(where c is any nonzero constant) has a general solution given by

u(x, y) = f(bx− ay)e−cx/(a
2+y2)

for any twice differentiable function f : R → R. [Hint: An ordinary differential equation
of the form ay′ + by = 0 for y a function of x (which we hope to discover, for that would
be ‘solving’ the differential equation), and constants a and b can be solved by noticing that
we can rewrite it as y′/y = −b/a, then noting that y′/y = (ln y)′ via the chain rule, so
that in fact we have (ln y)′ = −b/a. Integrating with respect to x gives ln y = −(b/a)x + c
for some arbitrary constant of integration c. Taking the exponential of both sides gives
y = e−(b/a)x+c = Ce−(b/a)x, where C = ec. Thus, we have solved our differential equation,
up to a constant C.] �

Example 2.4 Consider the Laplace operator on R2,

∆ =
∂2

∂x2
+

∂2

∂y2

This operator takes twice differentiable functions f : R2 → R to at least continuous functions
from R2 to R,

∆f =
∂2f

∂x2
+
∂2f

∂y2
: R2 → R

This is the expression of ∆ in standard Cartesian coordinates, but what if we wanted to exploit
some internal symmetry of a problem. Suppose that we were trying to solve a second order
differential equation, called the wave equation (which obviously models wave propagation
through some medium),

∂2u

∂t2
= ∆u

(Here u : R3 → R is given also as a function of time, u(t, x, y), and the z-value of u at a point
(x, y) in R2 at time t represents the height of the wave.) Suppose further that we know the
wave has some circular symmetry, that is the wave propagates outward symmetrically about
some point. Then it would obviously be more convenient to treat this problem, that is to look
for solutions to utt = ∆u, if we convert to polar coordinates. My claim is that the Laplace
operator in polar coordinates takes the expression

∆ =
1

r

∂

∂r
+

∂2

∂r2
+

1

r2
∂2

∂θ2

Let’s prove this by starting with the right-hand side and then showing it’s equal to the left-hand
side. Well, this means using the polar coordinates of Example 1.4,

x = r cos θ and y = r sin θ

and the chain rule on any twice-differentiable function f : R2 → R, since what we want to
compute is the partials of f(r, θ), which means the partials of the composition f ◦ψ : R2 → R
where

ψ = ϕ−1 : R2 → R2

(x, y) = ψ(r, θ) =
(
r cos θ, r sin θ

)
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is the change-of-coordinate function from polar to Cartesian. Well, the chain rule in compo-
nents is

fr(r, θ) = fx(ψ(r, θ))xr(r, θ) + fy(ψ(r, θ))yr(r, θ)

fθ(r, θ) = fx(ψ(r, θ))xθ(r, θ) + fy(ψ(r, θ))yθ(r, θ)

which we’ll abbreviate, in the interest of space, to

fr = fxxr + fyyr

fθ = fxxθ + fyyθ

thus avoiding mention of where we evaluate each (but as you have noted in your WebWork
and homework, where you evaluate e.g. fx is different from where you evaluate yr!). Then,
since

xr = cos θ, yr = sin θ, xθ = −r sin θ, yθ = r cos θ

we have

fr = fx cos θ + fy sin θ

fθ = −fxr sin θ + fyr cos θ

Let’s now compute the second partials. This will involve using the chain rule again on fx and
fy, for example (fx)r = (fx)xxr + (fx)yyr = fxxxr + fxyyr = fxx cos θ + fxy sin θ. So,

frr = (fr)r

=
(
fx cos θ + fy sin θ

)
r

=
(
fx
)
r

cos θ +
(
fy
)
r

sin θ

=
(
fxxxr + fxyyr

)
cos θ +

(
fyxxr + fyyyr

)
sin θ

= fxx cos2 θ + 2fxy sin θ cos θ + fyy sin2 θ

and

fθθ = (fθ)θ

=
(
−fxr sin θ + fyr cos θ

)
θ

= −r
(
fx sin θ

)
θ

+ r
(
fy cos θ

)
θ

= −r
((
fx
)
θ

sin θ + fx
(
sin θ

)
θ

)
+ r
((
fy
)
θ

cos θ + fy
(
cos θ

)
θ

)
= −r

((
fxxxθ + fxyyθ

)
sin θ + fx cos θ

)
+ r
((
fyxxθ + fyyyθ

)
cos θ − fy sin θ

)
= −r

((
fxx(−r sin θ) + fxy(r cos θ)

)
sin θ + fx cos θ

)
+r
((
fyx(−r sin θ) + fyy(r cos θ)

)
cos θ − fy sin θ

)
= fxxr

2 sin2 θ − 2fxyr
2 sin θ cos θ + fyyr

2 cos2 θ − rfx cos θ − rfy sin θ

11



Therefore, the punchline is

1

r
fr + frr +

1

r2
fθθ =

1

r

(
fx cos θ + fy sin θ

)
+
(
fxx cos2 θ + 2fxy sin θ cos θ + fyy sin2 θ

)
+

1

r2

(
fxxr

2 sin2 θ − 2fxyr
2 sin θ cos θ + fyyr

2 cos2 θ − rfx cos θ − rfy sin θ
)

=
���

���
���

�
1

r
fx cos θ +

1

r
fy sin θ + fxx cos2 θ +((((

(((2fxy sin θ cos θ + fyy sin2 θ

+fxx sin2 θ −(((((
((

2fxy sin θ cos θ + fyy cos2 θ −
���

���
���

�
1

r
fx cos θ − 1

r
fy sin θ

= fxx
(
sin2 θ + cos2 θ

)
+ fyy

(
sin2 θ + cos2 θ

)
= fxx + fyy

This completes the proof. �

Example 2.5 Show that the Laplace operator on R3,

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

has the following expression in spherical coordinates:

∆ =
∂2

∂r2
+

1

r2
∂2

∂θ2
+

1

r2
1

sin2θ

∂2

∂φ2
+

2

r

∂

∂r
+

1

r2
cos θ

sin θ

∂

∂θ

or, in even more compact notation,

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂φ2

You can check out the Plane Math page for a derivation of this, but I would recommend that
only as a way to check your work. �
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