
Differentiability
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1 Matrices and Linear Functions

1.1 Algebraic Properties of Matrices

Let us define a real m× n matrix as an array of mn real numbers aij consisting of m rows
and n columns,

A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

 (1.1)

The index i in aij indicates the ith row and the index j indicates the jth column. For example,
a2,3 is the real number in the second row, third column of A. The word “real” in the phrase
“real matrix” refers to the fact that its entries ai are real numbers. We could analogously
define complex matrices, quaternionic matrices, integer matrices, etc.

Example 1.1 The following is a real 3× 2 matrix:1 −1
2 −4

0
√

2


while the following is a real 1× 4 matrix:(

−1 2 45 − 1√
3

)
�

We can define addition of two matrices A and B of the same dimension m × n as we did
with vectors, componentwise:

A+B =

a11 · · · a1n
...

. . .
...

am1 · · · amn

+

 b11 · · · b1n
...

. . .
...

bm1 · · · bmn

 =

 a11 + b11 · · · a1n + b1n
...

. . .
...

am1 + bm1 · · · amn + bmn

 (1.2)

We can also define scalar multiplication of an m× n real matrix A by a real number a:

aA = a

a11 · · · a1n
...

. . .
...

am1 · · · amn

 =

aa11 · · · aa1n
...

. . .
...

aam1 · · · aamn

 (1.3)
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Example 1.2 For example, here a sum of 3× 2 matrices:1 −1
2 −4

0
√

2

+

 20 9
5 3√
5 2

 =

 1 + 20 −1 + 9
2 + 5 −4 + 3

0 +
√

5
√

2 + 2

 =

 21 8
7 −1√
5 2 +

√
2


and here is a scalar multiple of a 3× 2 matrix.

5

1 −1
2 −4

0
√

2

 =

5 · 1 5 · (−1)
5 · 2 5 · (−4)

5 · 0 5 ·
√

2

 =

 5 −5
10 −20

0 5
√

2

 �

We can also multiply matrices. If A is an m × n matrix and B is an n × p matrix (m, n
and p may be different here, but note that n appears in the dimensions of both A and B,
in specific locations!), then the product of A and B, written AB, is an m × p matrix whose
entries cij are the dot products of the ith row of A and the jth column of B. That is, if we
write A in terms of row vectors,

A =


~a1
~a2
...
~am

 , where

~a1 = 〈a11, . . . , a1n〉
~a2 = 〈a21, . . . , a2n〉

...

~am = 〈am1, . . . , amn〉

(1.4)

and if we write B in terms of column vectors,

B =
(
~b1 ~b2 · · · ~bp

)
where ~b1 =

b11...
bn1

 , ~b2 =

b12...
bn2

 , · · · ~b1 =

b1p...
bnp


(1.5)

then

AB =


~a1 ·~b1 ~a1 ·~b2 · · · ~a1 ·~bp
~a2 ·~b1 ~a2 ·~b2 · · · ~a1 ·~bp

...
...

. . .
...

~am ·~b1 ~am ·~b2 · · · ~am ·~bp

 (1.6)

Example 1.3 Let us see how this works when we multiply a 3× 2 matrix with a 2× 5. We
should, of course, get a 3× 5 matrix. Let

A =

1 −1

0
√

2
2 −4

 , B =

(√
7 1 2 1 0
2 −4 1 0 3

)

Then A and B are written in terms of their row and column vectors as

A =

~a1~a2
~a3

 =

〈1,−1〉
〈0,
√

2〉
〈2,−4〉


B =

(
~b1 ~b2 ~b3 ~b4 ~b5

)
=

((√
7

2

)
,

(
1
−4

)
,

(
2
1

)
,

(
1
0

)
,

(
0
3

))
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We really think of the ~bj as vectors, of course, so for example ~b1 = 〈
√

7, 2〉. Then, we have

AB =

~a1 ·~b1 ~a1 ·~b2 ~a1 ·~b3 ~a1 ·~b4 ~a1 ·~b5
~a2 ·~b1 ~a2 ·~b2 ~a2 ·~b3 ~a2 ·~b4 ~a2 ·~b5
~a3 ·~b1 ~a3 ·~b2 ~a3 ·~b3 ~a3 ·~b4 ~a3 ·~b5


=

〈1,−1〉 · 〈
√

7, 2〉 〈1,−1〉 · 〈1,−4〉 〈1,−1〉 · 〈2, 1〉 〈1,−1〉 · 〈1, 0〉 〈1,−1〉 · 〈0, 3〉
〈0,
√

2〉 · 〈
√

7, 2〉 〈0,
√

2〉 · 〈1,−4〉 〈0,
√

2〉 · 〈2, 1〉 〈0,
√

2〉 · 〈1, 0〉 〈0,
√

2〉 · 〈0, 3〉
〈2,−4〉 · 〈

√
7, 2〉 〈2,−4〉 · 〈1,−4〉 〈2,−4〉 · 〈2, 1〉 〈2,−4〉 · 〈1, 0〉 〈2,−4〉 · 〈0, 3〉


=

 √7− 2 5 1 1 −3

2
√

2 −4
√

2
√

2 0 3
√

2

2
√

7− 8 18 0 2 −12


�

1.2 Geometric Properties of Matrices

The significance of matrices is that we can use them to define linear functions, which, as
the name suggests, are functions that generalize functions of a single variable whose graphs
are lines,

f(x) = mx+ b (1.7)

We have already seen an example of this in the “linear” equation for a plane, z = mx+ny+b,
which is the graph of the function z = g(x, y) = mx+ ny + b. This is a very geometric idea.
Let us explain the geometric content of this now.

Recall the equation of a plane,
ax+ by + cz + d = 0 (1.8)

We can consider this plane either as the level surface of a function f : R3 → R, namely
f(x, y, z) = ax+ by + cz + d, or else, solving for z (which gives z = −a

cx−
b
cy −

d
c , assuming

we can do this, i.e. assuming c 6= 0), we can consider it as the graph of a function g : R2 → R,
namely g(x, y) = −a

cx−
b
cy−

d
c . Let us take the latter approach for the moment. In general,

the graph of a function of the type

g : R2 → R
g(x, y) = mx+ ny + b

(1.9)

will be a plane. If b 6= 0, that plane will not pass through the origin (0, 0, 0) (it will pass
instead through (0, 0, b), of course). Our goal is to take a complicated function f : R2 → R,
whose graph may be curved and twisted, and locally approximate its graph by the graph of
a linear function, that is a function of the type (1.9). g is called “linear” because it is a
generalization of the one-dimensional line, y = mx+ b. Now we have two dimensions, so the
analog is z = mx+ ny + b.

More generally, a function f : Rn → R will be called linear if it is of the form

f(x) = f(x1, x2, . . . , xn) = m1x1 +m2x2 + · · ·+mnxn + b (1.10)

What if the function is vector-valued, that is f : Rn → Rm? Then f can be described in
terms of m component functions fi : Rn → R,

f(x) =
(
f1(x), f2(x), . . . , fm(x)

)
(1.11)
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and if each of these component functions fi is linear, i.e. if each fi is of the form (1.10), then
we get a system of linear expressions,

f1(x) = f1(x1, x2, . . . , xn) = m11x1 +m12x2 + · · ·+m1nxn + b1

f2(x) = f1(x1, x2, . . . , xn) = m21x1 +m22x2 + · · ·+m2nxn + b2

...

fm(x) = f1(x1, x2, . . . , xn) = mm1x1 +mm2x2 + · · ·+mmnxn + bm

(1.12)

With matrix and vector notation, we can neatly write the system (1.12) as
f1(x)
f2(x)

...
f1(x)

 =


m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

. . .
...

mm1 mm2 · · · mmn



x1
x2
...
xn

+


b1
b2
...
bm

 (1.13)

If we write the component expression of f in (1.11) as a column vector instead of a row vector,
then we can even more neatly write (1.12) as

f(x) = Ax + b (1.14)

where

f(x) =


f1(x)
f2(x)

...
f1(x)

 , A =


m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

. . .
...

mm1 mm2 · · · mmn

 , b =


b1
b2
...
bm


A function f : Rn → Rm of the form (1.14) will be called a linear function. (Note, however,
that in many other books only a function of the type f(x) = Ax is called linear, while a
function of the type f(x) = Ax + b is called affine.)

Exercise 1.4 Show that if A is an m × n matrix, x and y are (column) vectors in Rn

(thought of as n × 1 matrices), and a and b are real numbers, then we have the following
distributivity law: A(ax + by) = a(Ax) + b(Ay). �

1.3 Examples of Linear Functions

Example 1.5 A very simple, though not very interesting, example of a linear function is
the unction f : R3 → R2,

f(x, y, z) =
(
x+ 5y − z − 4, 4x+ y + 3z + 2

)
The two component functions of f are

f1(x, y, z) = x+ 5y − z − 4

f2(x, y, x) = 4x+ y + 3z + 2

and they are both linear, so the function f is linear. As we did in the general case, we can
write the system of expressions above as a single matrix expression:

f(x, y, z) =

(
f1(x, y, z)
f2(x, y, z)

)
=

(
1 5 −1
4 1 3

)xy
z

+

(
−4

2

)
�
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Example 1.6 Let f : R2 → R2 be the rotation-followed-by-a-translation function in
the plane,

f(x, y) =
(
x cos θ − y sin θ + 5, x sin θ + y cos θ − 4

)
This is a rotation of the plane through an angle θ followed by a translation by the vector/point
(5,−4). We can write this in matrix notation as

f(x, y) =

(
f1(x, y)
f2(x, y)

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
5
−4

)

Let us briefly explain the geometric reasoning behind this expression. Let’s start with a rotation
through an angle θ, call it R. In the following picture of the unit circle, we rotate the two
points x and y lying on the circle, as well as the sum x + y lying outside of it, by an angle θ,
that is we apply a rotation R to them.

x

y

1

R(x)
R(y)

R(x) +R(y)

x

y

x + y

Now, the first thing to notice is that every point x = (x, y) in the plane can be written as a
sum of scalar multiples of the coordinate vectors/points i = (1, 0) and j = (0, 1), namely by

(x, y) = (x, 0) + (0, y) = x(1, 0) + y(0, 1) = xi + yj

so if we can manage to characterize what the rotation does to i and j, then we’ll understand
what it does to any point x, provided of course that R is linear, that is it satisfies

R(x + y) = R(x) +R(y)

R(ax) = aR(x)

for all points/vectors x and y and all real numbers a (see Exercise 1.4 above for the algebraic
reason for linearity). The intuitive geometric reasoning for linearity is contained in the above
diagram: we’d like to be able to rotate the points x and y to R(x) and R(y), then add them
to get R(x) + R(y), and we should get the same point/vector as when we first add x and y
and then rotate the result to R(x + y). If R were linear, then knowing how R treats i and j
means we know how it treats (x, y) = xi + yj, because

R(x, y) = R(xi + yj) = xR(i) + yR(j)

Let’s now characterize R on i and j. Clearly, a rotation through a positive angle θ sends
the point i = (1, 0) to the point (cos θ, sin θ) and it sends the point j = (0, 1) to the point
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(− sin θ, cos θ), as can be seen in the following diagram:

x

y

R(i) = (cos θ, sin θ)

i = (1, 0)

θ

1

R(j) = (− sin θ, cos θ)

j = (0, 1)

θ

1

That is,

R(i) = R(1, 0) = (cos θ, sin θ)

R(j) = R(0, 1) = (− sin θ, cos θ)

Therefore, assuming the linearity of R we have that

R(x, y) = R(xi + yj)

= xR(i) + yR(j)

= x(cos θ, sin θ) + y(− sin θ, cos θ)

=
(
x cos θ − y sin θ︸ ︷︷ ︸

R1(x,y)

, x sin θ + y cos θ︸ ︷︷ ︸
R2(x,y)

)

for all points x = (x, y) in R2. Putting this in matrix notation, R can be described as a matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
(1.15)

and its effect on a point/vector x = (x, y) in R2 is to left-multiply it, as a column vector, by
the matrix R:

R

(
x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
The cumulative effect of the rotation R, say through θ = π/6, is to rotate the entire plane:

x

y

θ

x

y
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Next, consider a translation T by a point/vector v = (a, b). This is much simpler to
understand. A translation simply adds the point/vector v to any given point x = (x, y),

T (x) = x + v = (x, y) + (a, b) = (x+ a, y + b)

or, if we’re going to write everything in terms of column vectors,

T

(
x
y

)
=

(
x
y

)
+

(
a
b

)
The effect of T is thus to shift then entire plane R2 by the vector v. For example, if v =
(3/2, 1/2), the entire plane is shifted 3/2 units to the right and 1/2 a unit up:

x

y

x

y

Lastly, let’s combine the two. The way to do this is to compose the two, first apply the rotation,
then apply the translation,

f(x) = (T ◦R)(x), i.e. f

(
x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
a
b

)
The picture is the following:

x

y
x

y

�

7



Example 1.7 If ` is a line in the plane R2 passing through the origin, then a reflection
about ` is a function R : R2 → R2, which obviously satisfies

R(x) =

{
x if x lies on `

−x if x is orthogonal to `

Note that for x to be orthogonal to ` we must have the entire line containing x be perpendicular
to ` (for if that is the case, then any point on the line will be orthogonal to any point in the
other line!). What about every other point in the plane? Well, if x = (x, y) is any arbitrary
point in R2, then we can decompose it into parallel and perpendicular components to `:

x = x‖ + x⊥

In this case, we must have that

R(x) = R(x‖ + x⊥) = R(x‖) +R(x⊥) = x‖ − x⊥

if we suppose, as we must, that R is linear. Now, we know what x‖ and x⊥ are. Of course,
` be entirely described by a unit vector v = (a, b), since every other point on ` is a scalar
multiple of v, that is

` = {λv = (λa, λb) | λ is a real number}

As a consequence, x‖ = (x · v)v and x⊥ = x− x⊥ = x− (x · v)v, which means

R(x) = x‖ − x⊥

= (x · v)v −
(
x− (x · v)v

)
= 2(x · v)v − x

We can describe this operation as a matrix, by noting that 2x ·v = 2ax+ 2by, so that writing
v and x as column vectors, we get

R
(
x
y

)
= R(x) = 2(x · v)v − x

= (2ax+ 2by)

(
a
b

)
−
(
x
y

)
=

(
2a2x+ 2aby − x
2abx+ 2b2y − y

)
=

(
(2a2 − 1)x+ (2ab)y
(2ab)x+ (2b2 − 1)y

)
=

(
2a2 − 1 2ab

2ab 2b2 − 1

)(
x
y

)
For example, if ` is the line containing the unit vector v = (

√
3/2, 1/2), i.e. (cosπ/6, sinπ/6),

then if we pick the point, say, x = (1/2, 3/2), it’s reflection about ` will be

R

(
1
2
3
2

)
=

(
2 · 34 − 1 2 ·

√
3
2 ·

1
2

2 ·
√
3
2 ·

1
2 2 · 14 − 1

)(
1
2
3
2

)
=

(
1
2

√
3
2√

3
2 − 1

2

)(
1
2
3
2

)
=

(
1+3
√
3

4√
3−3
4

)
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so the picture of R

x

y

`

v

x

x⊥

R(x)

In sum, then, if we’re going to reflect all points in R2 about a given line ` containing all scalar
mutliples of a specific unit vector v = (a, b), then the reflection R is a linear function given
in matrix terms by

R
(
x
y

)
=

(
2a2 − 1 2ab

2ab 2b2 − 1

)(
x
y

)
�

2 Differentiability

2.1 The Total Derivative

The thing we want to do now is to locally appproximate a complicated function f : Rn → Rm

by a much simpler linear function. This is the idea behind the total derivative of f at a point
a in Rn. Formally, we say that f is differentiable at a point a ∈ Rn if there exists an
m× n matrix (m and n here depend on the domain and range of f !)

Df(a) =

m11 · · · m1n

...
. . .

...
mm1 · · · mmn

 (a real m× n matrix) (2.1)

called the total derivative (or the Jacobi matrix), which satisfies the following limit
condition:

lim
h→0

‖f(a + h)− f(a)−Df(a)h‖
‖h‖

= 0 (2.2)

Equivalently, f must locally be approximated by a linear function, that is

f(a + h) ≈ Df(a)h + f(a) (2.3)

where the error in the approximation

E(h) = f(a + h)−
(
linear approximation of the value of f at x = a + h

)
= f(a + h)−

(
Df(a)h + f(a)

)
satisfies

lim
h→0

‖E(h)‖
‖h‖

= 0 (2.4)

This last statement, (2.4), is obviously the same statement as (2.2).
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Remark 2.1 The expression Df(a)h denotes matrix multiplication. Here, h = (h1, . . . , hn)
is a vector in Rn thought of as an n× 1 column vector:

Df(a)h =

m11 · · · m1n

...
. . .

...
mm1 · · · mmn


h1...
hn

 =

m11h1 + · · ·+m1nhn
...

mm1h1 + · · ·+mmnh1

 �

Remark 2.2 Thus to say that a function f is differentiable at a point is equivalent to saying
that f has a total derivative there. We shall see that f may be partially differentiable, and
to have directional derivatives in all directions, yet not be differentiable. We will explain this
further below. �

2.2 The Directional Derivative

Suppose v is a ‘vector’ in Rn and a is a ‘point’ in Rn, and let T : R→ Rn be the translation-
by-tv function

T (t) = x + tv

We say that f : Rn → Rm has a directional derivative at a in the direction of v if the
composition f ◦ T : R→ Rm, (f ◦ T )(t) = f(a + tv), is “differentiable at 0”, in the sense that
the limit

fv(a) or Dvf(a) =
d

dt

∣∣∣∣
t=0

f(a + tv)

= lim
t→0

f(a + tv)− f(a)

t

(2.5)

exists in Rm.

Remark 2.3 Notice that for each fixed nonzero t the difference f(a + tv) − f(a) in the

numerator is a vector in Rm, while 1/t is a real number, so the quotient f(a+tv)−f(a)
t is

actually scalar multiplication of the vector f(a + tv)− f(a) by 1/t.

Another thing to notice is that in the sum a + tv we added a point to a vector. Since we have
emphasized blurring the lines between points and vectors in Rn, on account of algebraically
they are indistinguishable, at least in Rn, the sum makes sense. �

2.3 The Partial Derivative

Now suppose f is a real-valued function, f : Rn → R. The ith partial derivative of f at
a is the directional derivative of f at a in a coordinate direction, that is in the direction of a
unit coordinate vector ei = (0, . . . , i, . . . , 0),

∂f

∂xi

∣∣∣∣
x=a

or fxi
(a) or Dif(a) =

d

dt

∣∣∣∣
t=0

f(a + tei)

= lim
t→0

f(a + tei)− f(a)

t

= lim
t→0

f(a1, . . . , ai−1, ai + t, ai+1, . . . , an)− f(a1, . . . , ai, . . . , an)

t

(2.6)
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Remark 2.4 The practical import of this definition will become clear in a minute. For now,
notice that the derivative d

dt

∣∣
t=0

f(a + tei) is an ordinary derivative from Calc 1. It’s the
derivative of the real-valued function of a real variable f ◦ T : R→ R, (f ◦ T )(t) = f(a + tei).
This means that all the other coordinates, which we normally treat as variables, since they
may vary, are treated here as constants. Thus, if we label the variables x1, . . . , xi, . . . , xn,
all the other xj for j 6= i are treated as constants in any expression for f . For example, if

f(x, y, z) = xyz + x2y + z2, in the partial derivative ∂f
∂x with respect to x the ‘variables’ y

and z are treated as constants, so we can do what we normally do when computing a Calc 1
derivative, pull the constants out. Here, for example, we’d have ∂f

∂x = yz + 2xy. �

2.4 The Relationship Between the Total and Directional and Partial
Derivatives

Nobody wants to compute an actual limit, though the limit idea is extremely important
theoretically. Luckily, we don’t have to here. The directional derivative, though defined in
terms of a limit, is in fact computable in terms of a matrix product!

Theorem 2.5 If f : Rn → Rm is differentiable at a in Rn, then all of its directional deriva-
tives at a exist, and for any choice of vector v in Rn we have

Dvf(x) = Df(x)v (2.7)

The left-hand side is a limit, while the right-hand side is a matrix product, with v treated as
a column vector.

Proof: Since f is differentiable at a, fix v and consider h = tv for some sufficiently small
t ∈ R. Applying the linear approximation (2.3) and the linearity of the derivative Df(a) (i.e.
Df(a)(ax + by) = aDf(a)x + bDf(a)y, cf. Exercise 1.4 above) we get

f(x + tv)− f(x)− tDf(x)v = f(x + tv)− f(x)−Df(x)(tv) (2.8)

= f(x + h)− f(x)−Df(x)h

= E(h)

= E(tv)

and applying the limit (2.4)

lim
t→0

‖E(tv)‖
|t|

= lim
t→0

‖E(tv)‖
|t|‖v‖

· ‖v‖ = lim
t→0

‖E(tv)‖
‖tv‖

· ‖v‖ = lim
h→0

‖E(h)‖
‖h‖

· ‖v‖ = 0 · ‖v‖ = 0

By (2.8) this means

lim
t→0

‖f(x + tv)− f(x)− tDf(x)(v)‖
t

= 0

and hence

lim
t→0

f(x + tv)− f(x)

t
−Df(x)(v) = lim

t→0

f(x + tv)− f(x)

t
− lim

t→0

tDf(x)(v)

t

= lim
t→0

f(x + tv)− f(x)− tDf(x)(v)

t
= 0

i.e.

Dvf(x) = lim
t→0

f(x + tv)− f(x)

t
= Df(x)(v) �
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Example 2.6 Suppose f : R3 → R2 is differentiable at the point a = (1, 1, 2) and v =
(−1, 4, 2) is a vector in R3. If we already knew the total derivative of f , say

Df(a) =

(
2 3 2
1 0 5

)
then computing the directional derivative of f at a in the direction of v would be easy, namely

fv(a) = Df(a)v =

(
2 3 2
1 0 5

)−1
4
2

 =

(
14
9

)
�

Thus, if f is differentiable at a, the task is to find a way to compute Df(a). For
then we can compute all directional derivatives by simple matrix multiplication. Luckily, we
can do this, using the previous theorem, provided we know the that the total derivative Df(a)
has rows consisting of the total derivatives of the component functions, that is

D

 f1(a)
...

fm(a)


︸ ︷︷ ︸

Df(a)

=

Df1(a)
...

Dfm(a)



In this case I claim that the total derivative Df(a) is the matrix of partial derivatives
of the component functions fi of f ,

Df(a) =


∂f1
∂x1

∣∣∣∣
a

· · · ∂f1
∂xn

∣∣∣∣
a

...
. . .

...
∂fm
∂x1

∣∣∣∣
a

· · · ∂fm
∂xn

∣∣∣∣
a

 (2.9)

To see this, take a real-valued function first, f : Rn → R (for any vector-valued function
as above is made up of its m real-valued component functions) and look at the directional
derivative in the ith coordinate direction ei = (0, . . . , 1, . . . , 0) (it has a 1 in the ith slot and
0 everywhere else). Letting

Df(a) =
(
m1 m2 · · · mn

)
be the 1×n matrix defining the total derivative of f , and noting that the ith partial derivative
is the directional derivative in the ith coordinate direction, we have

∂f

∂xi

∣∣∣∣
a

= Dei
f(a) = Df(a)ei =

(
m1 m2 · · · mn

)


0
...
1
...
0


= m1 · 0 +m2 · 0 + · · ·mi · 1 + · · ·mn · 0
= mi

This is true for each i = 1, . . . , n, so

Df(a) =
(
m1 m2 · · · mn

)
=

(
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

)

12



Now consider a vector-valued function f : Rn → Rm, f = (f1, . . . , fm). Then, each of its
component functions fi is a real-valued function, and the above result applies separately to
each, from which we get our result,

Df(a) = D

 f1(a)
...

fm(a)

 =

Df1(a)
...

Dfm(a)

 =


∂f1
∂x1

∂f

∂x2
· · · ∂f1

∂xn
...

...
. . .

...
∂fm
∂x1

∂f

∂x2
· · · ∂fm

∂xn


The only questionable thing about this is the legality of the second equality, where we “pulled
the D inside the column vector.” It was, in fact, legal, and moreover our ability to do this
gives us another useful way to decide the differentiability of a function. Let us state and prove
this result carefully.

Theorem 2.7 A function f : Rn → Rm, f = (f1, . . . , fn), is differentiable at a if and only
if each of its component functions fi : Rn → R is differentiable at a. In that case, we have

Df(a) = D

 f1(a)
...

fm(a)

 =

Df1(a)
...

Dfm(a)

 (2.10)

That is, to compute Df(a) we can just compute the 1× n derivative matrices of the fi first,

which we know are of the form Dfi(a) =
(

∂fi
∂x1

∣∣
a
· · · ∂fi

∂xn

∣∣
a

)
, and enter the result into the

ith row of the larger matrix.

Proof: This follows from the inequalities

|ai| ≤ ‖a‖ ≤
√
n max

1≤i≤n
|ai|

for all i, since if f is differentiable at a, then the limit (2.2) exists, so the first inequality above
implies that the limit of zero exists in each of the coordinates, and so for each of the coordinate
functions. Indeed, by that limit we must have that Dfi(a) is the ith component function of
Df(a). Conversely, if the component functions are differentiable at a, then multiplying the
limit (2.2) for fi by

√
n and using the second inequality above we have that the limit (2.2)

for f holds as well (just choose the fi with maximum absolute value), and moreover we must
have that Dfi(x) are the coordinate linear functionals of Df(a) by the first inequality. �

Now that we know how to compute Df(a) if we know that Df(a) exists, we have to answer the
question, “How do we determine the existence of Df(a)?”. Well, we have seen that it
boils down do determining the existence of the m separate total derivatives of the component
functions Dfi(a). The remaining question, therefore, is, “How do we determine the
existence of the m separate total derivatives Dfi(a) of the component functions
fi?” The näıve answer is, “Well, just compute the partials ∂fi

∂xj
at a of each fi and put them in

a matrix,” unfortunately, is not entirely correct. It would be if we knew that the partials were
also continuous on a neighborhood of the point a, but not otherwise. Here is an example
of why the existence of the partials ∂fi

∂xj
at a alone is not enough to conclude the

existence of Df(a) (we must also have their continuity):

Example 2.8 Consider the function f : R2 → R given by

f(x, y) =


x2y

x4 + y2
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

13



First, notice that all its directional derivatives exist at the origin, for if v = (h, k) is any
vector in R2, then the directional derivative Dvf(0) is computable directly:

Dvf(0) = lim
t→0

f(0 + tv)− f(0)

t
= lim

t→0

(th)2(tk)− 0

(th)4 + (tk)2
·1
t

= lim
t→0

��t3h2k

��t3(t2h4 + k2)
=


h2

k
if k 6= 0

0 if k = 0

In particular, choosing v = e1 = (1, 0) and v = e2 = (0, 1) shows that it has partial derivatives
∂f
∂x |(0,0) = ∂f

∂y |(0,0) = 0 at the origin. Outside the origin it is easily seen to be partially

differentiable, and its partial derivatives exist everywhere on R2, and are given by

∂f

∂x
=


(x4 + y2)2xy − 4x5y

(x4 + y2)2
, if (x, y) 6= (0, 0)

(0, 0), if (x, y) = (0, 0)

∂f

∂y
=


(x4 + y2)x2 − 2x2y2

(x4 + y2)2
, if (x, y) 6= (0, 0)

(0, 0), if (x, y) = (0, 0)

Thus, f is partially differentiable everywhere in R2. However, f is not differentiable at the
origin, in fact it is not even continuous there. For notice that on the parabola y = x2 the
function is constant with value 1/2:

f(h, h2) =
h4

2h4
=

1

2

so that arbitrarily close to the origin there are points for which f(x, y) = 1/2, while f(0, 0) = 0.
On the other hand, along any straight line y = mx the function satisfies

f(x,mx) =
mx3

x2(x2 +m2)
=

mx

x2 +m2

so f approaches 0 along straight lines. By one of your homework problems, however, all
differentiable functions must be continuous, so we conclude that f is not differentiable at the
origin. (We prove that differentiability implies continuity below!)

The problem here, of course, is that the partials ∂f
∂x and ∂f

∂y are not continuous at the origin.

For example, ∂f
∂x approaches 0 along the parabola y = x2 while it diverges to −∞ along the

line y = x. (Check this!) �

Remark 2.9 The problem point (0, 0) isn’t special. We could make any point a problem
point, for example (1, 5), by translating the above example function by (1, 5), i.e. by consid-

ering f(x, y) = (x−1)2(y−5)
(x−1)4+(y−5)2 when (x, y) 6= (1, 5) and f(0, 0) = (0, 0). �

OK, so now we know that the mere existence of the partials ∂fi
∂xj

∣∣
a

of f = (f1, . . . , fm) isn’t

enough to ensure the existence ofDf(a). What we need is the continuity of the partials ∂fi
∂xj

on

a neighborhood of a. Let us prove this!

Theorem 2.10 Let f : Rn → Rm. If all the partial derivatives ∂fi
∂xj

∣∣
a

of f exist and are

continuous at a, then f is differentiable at a.

14



Proof: By Proposition 2.7 it is enough to prove this for the component functions fi of
f . Indeed, let fi be a component function of f , and suppose it’s partial derivatives all
exist and are continuous in a neighborhood of a. Then, since ∂fi

∂xj

∣∣
a

moves only in the jth

coordinate direction, we need only hj = (0, . . . , hj , . . . , 0) in those directions. By the definition

of continuity of ∂fi
∂xj

∣∣
a
, for any ε > 0 we choose there is a δ > 0 such that if ‖h‖ = |hj | < δ

then ∥∥∥∥ ∂fi∂xj

∣∣∣∣
a+h

− ∂fi
∂xj

∣∣∣∣
a

∥∥∥∥
|hj |

<
ε

n

Let h be a point in Rn, so that h = h1 + · · · + hn using our notation above. By the Mean
Value Theorem from Calc 1, the continuity of f and the existence of the jth partial implies
the existence of a point a + hj + tjej between a + hj and a + hj + ej such that

f(a + hj)− f(a) =

(
∂fi
∂xj

∣∣∣∣
x+hi+tiei

)
hj (2.11)

(Note: in the jth coordinate, keeping all other coordinates fixed, fj is a real-valued function of
a single variable, so this works. Recall the MVT: If f is continuous on [a, b] and differentiable
on (a, b) then there is a point c between a and b such that f(b)− f(a) = f ′(c)(b− a)!) As a
consequence, we have∥∥∥fi(a + h)− fi(a)−

(
∂fi
∂x1

∣∣∣∣
a

· · · ∂fi
∂xj

∣∣∣∣
a

)
h
∥∥∥ =

∥∥∥fi(a + h)− fi(a)−
n∑

j=1

(
∂fi
∂xj

∣∣∣∣
a

)
hj

∥∥∥
=

∥∥∥ n∑
j=1

(
∂fi
∂xj

∣∣∣∣
a+h+tjei

)
hj −

n∑
j=1

(
∂fi
∂xj

∣∣∣∣
a

)
hi

∥∥∥
≤

n∑
j=1

∥∥∥∥ ∂fi∂xj

∣∣∣∣
a+h+tjei

− ∂fi
∂xj

∣∣∣∣
a

∥∥∥∥|hj |
<

n∑
j=1

|hj |ε
n

≤ ‖h‖ε

where the first inequality is from factoring out |hj | and then using the triangle inequality, the
second is by application of (2.11) for each j, and the third by observing that |h1|+ · · ·+ |hn| ≤√
h21 + · · ·+ h2n + · · · +

√
h21 + · · ·+ h2n = n‖h‖. Dividing the above inequality through by

‖h‖ gives our desired inequality,∥∥∥fi(a + h)− fi(a)−
(
∂fi
∂x1

∣∣∣∣
a

· · · ∂fi
∂xj

∣∣∣∣
a

)
h
∥∥∥

‖h‖
< ε

We have thus demonstrated the limit

lim
h→0

∥∥∥fi(a + h)− fi(a)−
(
∂fi
∂x1

∣∣∣∣
a

· · · ∂fi
∂xj

∣∣∣∣
a

)
h
∥∥∥

‖h‖
= 0

which is the definition of differentiability, and moreover, in the course of the proof, we have

also shown that Df(a) =

(
∂fi
∂x1

∣∣∣∣
a

· · · ∂fi
∂xj

∣∣∣∣
a

)
as well! �
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Conclusion: If we know that the component functions of f = (f1, . . . , fm) are each
continuously differentiable on a neighborhood of our point a in Rn, then we know
that the fi, and therefore f itself, are differentiable, and the total derivative Df(a)
is in fact the m× n matrix of partial derivatives ∂fi

∂xj

∣∣
a
!

Example 2.11 Let f : R3 → R2 be given by f(x, y, z) = (x2 + y − z, exy sin z + xz).
Then f1(x, y, z) = x2 + y − z and f2(x, y, z) = exy sin z + xz are each clearly continuously
differentiable in each partial derivative (for example, ∂f1

∂x = 2x is continuous on all of Rn).
Therefore, f is differentiable and, say at a = (1, 1, 2), we have

Df(1, 1, 2) =


∂f1
∂x

∣∣∣∣
(1,1,2)

∂f1
∂y

∣∣∣∣
(1,1,2)

∂f1
∂z

∣∣∣∣
(1,1,2)

∂f2
∂x

∣∣∣∣
(1,1,2)

∂f2
∂y

∣∣∣∣
(1,1,2)

∂f2
∂z

∣∣∣∣
(1,1,2)


=

(
2x
∣∣
(1,1,2)

1
∣∣
(1,1,2)

−1
∣∣
(1,1,2)

yexy sin z + z
∣∣
(1,1,2)

xexy sin z
∣∣
(1,1,2)

exy cos z + x
∣∣
(1,1,2)

)

=

(
2 1 −1

e sin 2 + 2 e sin 2 e cos 2 + 1

)
Moreover, if v = (−1, 4, 2) is a vector in R3, then we can compute the directional derivative
of f at (1, 1, 2) in the direction of v by simple matrix multiplication:

D(−1,4,2)f(1, 1, 2) = Df(1, 1, 2)

−1
4
2


=

(
2 1 −1

e sin 2 + 2 e sin 2 e cos 2 + 1

)−1
4
2


=

(
0

3e sin 2 + 2e cos 2

)
�

2.5 Further Properties of the Total and Partial Derivative

Theorem 2.12 (Chain Rule I) Let f : Rn → Rm and g : Rm → Rp be functions such
that g ◦ f is defined (i.e. the image of f is contained in the domain of g). If f differentiable
at a ∈ Rn and g is differentiable at b = f(a), then their composite g ◦ f : Rn → Rp is
differentiable at a and their derivative is a matrix product, namely the product of their two
respective total derivatives,

D(g ◦ f)(a) = Dg
(
f(a)

)
·Df(a) (2.12)

The components of the matrix D(g ◦ f)(a) in (2.12) may explicitly be given by the formulas:

∂(g ◦ f)i
∂xj

∣∣∣∣
a

=
∂gi
∂y1

∣∣∣∣
b

∂f1
∂xj

∣∣∣∣
a

+ · · ·+ ∂gi
∂ym

∣∣∣∣
b

∂fm
∂xj

∣∣∣∣
a

(2.13)

or, if we let zi := gi(y1, . . . , ym) and yk := fk(x1, . . . , xn),

∂zi
∂xj

=
∂zi
∂y1

∂y1
∂xj

+ · · ·+ ∂zi
∂ym

∂ym
∂xj

(2.14)
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Theorem 2.13 (Clairaut: Equality of Mixed Partial Derivatives) If f : Rn → Rm

has twice continuously differentiable partial derivatives or equivalently if for all 1 ≤ i, j ≤ n the

partial derivatives ∂2f
∂xi∂xj

and ∂2f
∂xj∂xi

exist on a neighborhood of a point a and are continuous

at a, then
∂2f

∂xi∂xj

∣∣∣∣
a

=
∂2f

∂xi∂xj

∣∣∣∣
a

(2.15)

for all 1 ≤ i, j ≤ n.

Remark 2.14 Failure of continuity at a may lead to inequality of the mixed partials at a.
Consider the function f : R2 → R given by

f(x, y) =


x3y − xy3

x2 + y2
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

Then,

∂f

∂x
=


(x2 + y2)(3x2y − y3)− 2x(x3y − xy3)

(x2 + y2)4
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

=


3x4y − x2y3 + 3x2y3 − y5 − 2x4y + 2x2y3

(x2 + y2)4
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

=


x4y + 4x2y3 − y5

(x2 + y2)4
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

and

∂f

∂y
=


(x2 + y2)(x3 − 3xy2)− 2y(x3y − xy3)

(x2 + y2)4
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

=


x5 − 3x3y2 + x3y2 − 3xy4

(x2 + y2)4
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

=


x5 − 4x3y2 − xy4

(x2 + y2)4
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

Therefore, for a, b 6= 0 we have

∂f

∂x

∣∣∣∣
(0,b)

=
−5b5

b4
= −b ∂f

∂y

∣∣∣∣
(a,0)

=
a5

a4
= a

and consequently

∂2f

∂y∂x

∣∣∣∣
(0,0)

= lim
t→0

∂f
∂x

∣∣
(0,t)
− ∂f

∂x

∣∣
(0,0)

t
= lim

t→0

−t− 0

t
= −1

∂2f

∂x∂y

∣∣∣∣
(0,0)

= lim
t→0

∂f
∂y

∣∣
(t,0)
− ∂f

∂y

∣∣
(0,0)

t
= lim

t→0

t− 0

t
= 1
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and so ∂2f
∂y∂x

∣∣∣∣
(0,0)

6= ∂2f
∂x∂y

∣∣∣∣
(0,0)

. The problem, of course, is the discontinuity of the second

derivatives at (0, 0):

∂2f

∂x∂y
=

{
(x2+y2)2(5x4−12x2y2−y4)−2(x2y2)2x(x5−4x3y2−xy4)

(x2+y2)4 , if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

∂2f

∂y∂x
=

{
(x2+y2)2(x4+12x2y2−5y4)−2(x2y2)2y(x4y+4x2y3−y5)

(x2+y2)4 , if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

For example, along the line x = y we have ∂2f
∂x∂y = 2(1 − x), so it approaches a value of 2,

while along the line x = 0 it stays constant at 1, as noted above. �
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