Continuity

Alex Nita

Abstract

In this section we try to get a very rough handle on what’s happening to a function
f in the neighborhood of a point P. If I have a function f : R® — R™ one of the
first things I would want to check is it’s continuity at P, because then at least I'd
know if my function, which may represent some physical quantity, is ”well behaved” or
"moody” /”shifty” there. It’s a first approximation, a sort of ”eyballing” to see what’s
happening, roughly. To figure this out, I need to know what’s happening to f near P. If
I were to summarize the main idea behind continuity, I’d say the continuity of f at P is
entirely to do with f being stable near P, not jumping or oscillating wildy, not varying
erratically, basically being somehow contained or controlled near P. Continuity is about
f being stabilized near P, about it’s outputs, the y-values, staying within any given
neighborhood whenever its inputs, the x-values, stay within a prescirbed neighborhood
of P. The emphasis of continuity at P is on what’s happening around P, not at P.
There is a nice visual in terms of the graph of f: continuity at P means the graph of
f near P doesn’t tear or crinckle horribly—it has a kind of consistency near P. In this
section we try to make all this a bit more rigorous and computationally useful.

How you should read this: Firstly, I have included several interesting examples of
vector-valued functions. You should take a look at those examples if you're wondering
why we bother with all this vector-valued business. It’s because there are inherently
interesting functions with lots of physical and geometric content. But don’t get hung up
on the examples, just read them at leisure to see some interesting motivation. Secondly,
I have included the technical definitions of limit and continuity. Don’t get hung up on
those, or the examples which illustrate their use. They’re there as a supplement to the
book, and for those curious to see the underlying rigor to all this. The really important
thing here, in my opinion, is the theorem which says that any vector-valued function
f=(1,..., fm) : R® = R™ is continous at a point a € R™ if and only if each of it’s m
component functions f; : R™ — R is continuous at a. For this shows that the continuity
behavior of vector-valued functions is totally determined by the behavior of its real-
valued components. Hence, we only ever need to worry about continuity of real-valued
functions f : R® — R. This is why most calculus books only ever deal with this case.
But don’t worry about the proof-I haven’t even included it, because it’s a simple chasing
of es and ds. It’s technical and not worth your while in this course. Finally, look at the
examples at the end. The reason for all the fuss over limits and continuity is because if
you look at the important examples of functions we are likely to encounter—coordinate
transformations, physical examples, etc.—we’d really like to know whether they behave
erratically anywhere, and if so why. It’s an unfortunate fact of life that not all functions
are well-behaved in this sense. But what about our canonical coordinate transformations
and the physical examples we are likely to encounter? It would be nice to know that at
least they behave well! Let’s see if they do.

One more theorem is worth noting: the one that says sums, products, scalar multiples
and compositions of continuous functions are continuous. For knowing this gives us a way
to check whether a given function is continuous by merely checking the simple functions
of which it is made up. Thus, knowing that sine and polynomials are continous, we know
that 2sin(zy?) + 52°y* is continuous.

I have provided references to books you can consult for proofs and further discussion
on these topics. Some of these books are standard undergraduate analysis or linear
algebra texts, others you may never see in such a course, at least I haven’t. In any case,
they’re there for those of you interested in seeing more of what’s under the hood.



1 Examples of Vector-Valued Functions

Consider a function f : R™ — R™. We have already encountered a large collection such
functions in the notes on vectors and matrices, the linear functions, which are of the form
f(x) = Ax + b (here A is an m x n matrix and x and b are considered as ”vertical” or
”column vectors”, in R™ and R™, respectively). Now we consider the general case, with f
not necessarily linear. We think of such a function as vector-valued, although it is just

y-valued, where y isn’t a real number but an m-tuple of real numbers y = (y1,...,%m), a
point in R™. What f does is send points x = (z1,...,2,) to points y = (y1,...,Ym), but
how is each of the real entries y1, ..., ¥y, in y determined? Well, each y; is a function of x, in

this case a real-valued function of x, which we call the ith component function of f, and
denote it f;,

fi:R" >R
Yi = fi(x) (1)
This means
(1), fm(¥) = (1, y9n) = ¥ = f(x) (1.2)
This can be concisely written
f=0f s fm) (1.3)

Remark 1.1 The following examples are explained in much greater geometric detail in a
separate section on coordinates, and you should refer to that for their geometric content and
derivations. For now, we just consider the functions in the abstract. |

Example 1.2 A simple example of such a function is a change-of-coordinates. Consider
the change-of-coordinates map f : R3 — R3 changing spherical to Cartesian coordinates:

f:R® = R3
(z,y,2) = f(p,0,0) = (psinpcosb, psinpsinb, pcosyp)

The component functionsfi, fa, f3 : R> = R of f are

fi(p,0,¢) = psingpcost =
fa(p,0,p) = psingsind =y
f3(p,0,0) = pcosp =z

Example 1.3 Consider the rotation of the plane R? through a fized angle § (rotated coordi-
nates):

[R5 R?
(2',y') = f(z,y) = (zcosf — ysinf, xsind + ycosb)

For example, if we fix 0 = %, then the new coordinates are

() = s = (G- 4



The component functions fi, fa : RZ = R are

filz,y) = @—%—I'
fala) =+ Yy

This is actually an example of a linear function, for we can write it in matriz form:
'\ _ (cosf —sinb) (x -
y')  \sinf cosf ) \y

Example 1.4 Suppose we rotate not the xy-plane, but some arbitrary plane ax+by+cz+d =
0 in R3 through a fived angle 6. The function R : R® — R3 for this is dubbed Rodriguez’
rotation formula: take the normal vector n = (a,b,c) to the plane, and construct the
following function f : R?® — R3:

fx)=nxx

That 1is,
i j ok
flzyy,z)=|a b c|=(bz—cy, xzc—az, ay —bx)
Ty z

This is a linear function, and has matriz representation.

T’ 0 —c b T
y]=1¢ 0 -—a y
Z -b a O z
The matrixz above,
0 —c b
A= c 0 —a
-b a 0

is called the ”cross-product matriz”, in light of the fact that it was gotten from the cross-
product function f. Using this matriz A, Rodriguez’ rotation formula then gives the rotation
function R : R? — R3 in terms of the cross-product matriz above,

R:R* - R?
R(x) = Ix + sin0Ax + (1 — cos §) A%*x

(We think of x as a column vector, and I is the 3x 3 identity matriz with 1s along the diagonal
and 0s everywhere else.) It is a fact of linear algebra that there are coordinates (u,v) = ur+uvs
for the plane ax + by + cz + d = 0 in which the function R has the obvious rotation form

1 0 0
0 cosf —sinf
0 siné cos 0

Of course, we take the third coordinate vector for R? to be n itself, so that any point in this
coordinate system is given by (t,u,v) = tn + ur + vs. |



Example 1.5 Recall the rotation-followed-by-a-translation function f : R? — R? given in

matriz form by
7z cosf —sinf\ [z a
! (y) a (sinﬂ cos9> (y) u (b)

This function was described in greater detail in the lecture notes on vectors and matrices. B

Example 1.6 Recall the function R : R? — R? which reflects the entire plane across a given
line £ = {A\v | X € R}, where v. = (a,b) is some given unit vector sitting on the line. It is
given by

R(x)=2(x-v)v—x

It is in fact a linear function and can be described by a matriz:

x 2a% — 1 2ab x
R = 2
Y 2ab 2 —1) \y
where we write points/vectors as column vectors. This function, too, was described in greater
detail in the lecture notes on vectors and matrices. |

Example 1.7 (Electric and Magnetic Fields) Consider the functions

E:R* 5 R?
B:R* = R3

describing, respectively, the electric and magnetic vector fields in R3, varying over time,

E(Xa t) = E(x,y, Z;t)
B(x,t) = B(z,y,2,1)

giving, at each point x = (x,y, z), the magnitude and direction of the electric, resp. magnetic,
fields due to a charged source. If the fields EE and B are constant, i.e. unchanging over time,
then the time variable can be dropped and we can consider them as functions from R3 to R3,
in which case we call them, respectively, the electrostatic and magnetostatic fields.

The electric field due to a single point-charge q1 has a rather simple form, due to Coulomb’s

Law: ) ( ) .
@lr—rm Q.
E = = —
(x) dmeg |r — 1|3 dmeg r — r1|2r "

where 1 s the position of the source charge q1 and r is the point of interest in R® a distance
|r—r1| away from q1 (note, therefore, the radial symmetry of E), with r—r = :::h the unit
vector in the direction of q. €¢ is a constant, called the vacuum permativity. We’d like to
determine the electric field created by q1 at v € R3, for then maybe we would know what would
happen to another charged particle q at that point. By Coulomb’s law, if we were to drop that
second particle at r, the the electrostatic force exerted on q at position v (assuming R® is

a vacuum) would be

1 qq(r—ry)
F(I‘) = qE(I‘) = 4W€0 7‘1‘ — r1|3

This defines another vector-valued function,

F:R3> 5 R3



If the electric field evolves over time, and so is not static, then of course so does ¥, in which
case we should define F : R* — R3.

Since the electric fields satisfy the superposition principle, which says that the electric fields
E, and Ey due to source charge particles ¢ and qo are additive, we get for any fixed number
of charged particles q1, ..., qn sitting at positions ry, ... ,r,, respectively, that the cumulative
electric field created by q1,...,qy i

E(r):ZEi 1 Gg(r—ry)

i1 - 47T€(] i1 |I‘ - I'Z'|3

We next pretend that a charged surface S is a continuous medium consisting of uncountably
many such source charges q;, with possibly different charges, depending of course on their
location x in S, but now we change our thinking slightly and view the point-particle q; sitting
at x as having not a charge, but a charge charge density, denoted p(x). This is basically an
infinitessimal version of charge, namely a charge per unit volume. From this, and with the
assumption that p varies continuously (so there aren’t two points in S sitting close to each
other with wildly varying charge densities), we get a continuous analog of the above summation
forumla via limits of Riemann sums,

E(r) = /Sp(X)(r—X)dX

 dmey Ir — x|3

for the electric field at any point r outside of S.

Of course, determining E, F and B for particular configurations of charges in a surface S is
the hard part. It is the main task of the physicist. All we know about these functions is the
constraints they satisfy (in a vacuum), which were first spelled out by James Clerk Mazwell
m 1861-1862, and are now known as Maxwell’s equations:

V-E=0
0B
E=——
V x 5
V-B=0
1 OE
B=——.
VX c? Ot

Example 1.8 (Newtonian Gravitation) A similar situation is to be found with Newto-
nian, or classical, gravitation. The gravitational field created by a point-particle with mass
my 1s a vector-valued function

g:R® - R?
_Gmy(r—ry) Gmy ——

=- r—r
Ir —rq)? v —r|? !

g(r) =

where r is the point in R® a distance |r — r1| from our source particle (hence the radial
symmetry of g), and G is the gravitational constant. If a second particle of mass m were
to be dropped at the point, then Newton’s law of universal gravitation says that the force
exerted on the second particle at the point r by the first is

F:R®— R
G —
F(r) = mg(r) = —ﬂgr—rl
|r —rq]



If the second particle of mass m moves along a trajectory over time, then r gives the position
of that particle at time t, and so defines a path in R3:

r:R— R3 r=r(t)

In this scenario, Newton’s second law of motion says that the force F exerted on the second
particle by the first must satisfy a first order differential equation:

d*r(t)

F = =
ma a2

assuming, of course, that the path of the particle is smooth enough to be differentiated. If
there are n particles of respective masses my, ..., my, then the above considerations apply
patrwise to any two of them, m; and m;. But what about the whole system of n particles? If
the particles are held fixed, then as with the electrostatic field the cumulative graviational field
on an outside particle of mass m is the sum of these,

G i ——
F = ZF *Z %rfri

=1

But if the particles are not held fized, but interact with each other (like planets in a solar
system, for example), then we get from the law of universal gravitation and the second law of
motion that they must simultaneously satisfy the n equations

—

d2 I‘Z szmj
mi——5— dt2 Z |I‘] |2 (t) - T (t)

_rl

If the n particles were all the planets, moons, and sun in our solar system, for example,
we would consider ourselves successful if we could predict their paths accurately—accurately
enough, say, to predict solar or lunar eclipses. That would mean having explicit formulas
for the paths r;(t) of each planet, moon or the sun, for then we could simply solve for t in
any particular configuration of the system, say with the moon exactly in between earth and
the sun, or with the earth exactly in between the sun and the moon. Finding the paths r;(t),
then, is the task, and this task is notoriously difficult, and has become known as the n-body
problem. The case n = 2 has been solved, and partial results are in for the case n = 3, but
for n > 3 the problem is still open. For a quick overview, see http: //en. wikipedia. org/
wiki/N-body_problem. ]


http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/N-body_problem

2 Continuity of a Vector-Valued Function at a Point

2.1 Preliminaries: The Triangle and Revese Triangle Inequalities

Let us recall the definition of distance in R™: the distance between two points P = (x1,...,2,)
and Q@ = (y1,-..,yn) in R™ is given by an analog of the Pythagorean theorem:

d(P,Q) = V/(y1 —x1)? + (y2 — 2)* + - + (Yo — 20)? (2.1)

In R? this is exactly the Pythagorean theorem. Alternatively, we can view this as the
length/magnitude of the displacement vector 1@ from P to @,

PG| = 13- P (22)
= Y1y s Yn) — (Z1, ..., Zn)|

y1 — @1, Yn — @)

\/(yl —21)2 4+ (y2 —22)%2 4+ + (Y — Tn)?

There is an important inequality, the triangle inequality, relating the distances between
points P, @ and R: namely, the shortest distance between P and R is the straight-line
distance, shorter than the distance from P to @ plus the distance from @ to R,

Q

d(P,R) < d(P,Q)+d(Q,R)

PE| < |PQ| + |QF|

P

Why is this important? It’s our main tool for controlling f near P. Inequalities are great
for control. Before I explain all this, let me first prove the triangle inequality. The first step
toward it’s proof requires another, simpler inequality, the Cauchy-Schwartz inequality. We
remark only that it’s easier to work with vectors Z, ¢/ and 2z’ than points and their displacement
vectors, because we can always go back and forth between points and vectors anyway. It makes
the proofs easier to work with & rather than PQ, etc.

Theorem 2.1 (Cauchy-Schwartz Inequality) For any vectors &,y € R"™ we have
1z 91 < |2]14] (2.3)

Proof: Note that in R? and R? this follows from the fact that we have well-defined angles
between vectors: this supplies the identity Z - ¥ = |Z||7] cos 8, and along with the fact that
|cos @] < 1 we get our inequality. But in general, unless we define angles somehow,' we cannot
use this fact, but anyway we don’t need to use it—there’s a direct way to prove this without
angles. Define the nonnegative real-valued function of ¢

f(t) =17 —tyl®

1This can actually be done, using the dot product, in fact: simply let § = cos’l(

-
1Z]]

<y

). Cf. http:

<y

//en.wikipedia.org/wiki/Euclidean_space#Angle.


http://en.wikipedia.org/wiki/Euclidean_space#Angle
http://en.wikipedia.org/wiki/Euclidean_space#Angle

Then, foiling the right-hand out using the distributive and scalar properties of the dot product
we get

fO) =1 —tg]° = (F—tg)- (& —t§) =TT - 2AT- G+ °§ - §
which shows that f is a parabola sitting above the t-axis:

ft)=at* +bt+c>0

where a = - = |§]?>, b= —27 - and ¢ = - ¥ = |Z|?. Since f is sitting on or above the
t-axis, it has at most one real double root, or else two imaginary roots. This means, when
we use the quadratic formula ¢ = =bEvb—dac 3’;2_4“ for the roots of f, the discriminant b? — 4ac is
either 0 or negative, i.e.

b2 — 4ac <0

Plugging our a, b and c into this inequality gives
(=27 4)* — 4lgP*|7* < 0

which means
Az - g1 < AP 2P

Taking the square root of both sides gives the result. ]

Theorem 2.2 (Triangle Inequality) For any two vectors T,y € R™ we have
|17 + g1 < |Z] + |7 (2.4)
Proof: By the Cauchy-Schwartz inequality we have

Z+§? = (@+9)-(@F+79)
R4 GHT T

< Z-Z4+2Z-y|+¢-y  because a < |a| always
< @2+ 212)|] + |9 by the Cauchy-Schwartz inequality
= (|#+19)°
and taking the square root gives the triangle inequality. |

Let us now prove the reverse triangle inequality using the triangle inequality, which is
really the inequality we need for continuity.

Corollary 2.3 (Reverse Triangle Inequality) For any thwo vectors Z,§ € R™ we have
|1Z] = 171] <12 - 71 (2.5)
Proof: By the triangle inequality we get the following two inequalities:
%] = [& = 7+ 3] < &= ]+ |4]
gl =y — &+ <[y — 2| + |7
Since |§ — Z| = |& — ] (because in general we have |at| = |a||0], so with a = —1 we get
| — U] = |0]) we have that
7 < &~ 71+ 17
9] < |7 — g1 + |Z|



Subtracting |¢] from both sides of the first, and |Z| from both sides of the second, we get that

If we multiply the second inequality above by —1, we get that
|Z| = 9] = =2 — ¥
Combining the first of the above two inequalities with this one gives
—|7 =gl < |2 = 7] < |£ = 7]

which is precisely the statement of the reverse triangle inequality. (The statement |a| < b is
equivalent to —b < a < b for all real numbers a and b. For certainly whenever |a| < b we
have a < |a| < b, and so —b < —|a| < a, too, i.e. —b < a <b. And conversely, if —b < a < b,

then since either a = |a| or a = —|a| depending on whether « is positive or not: in the first
case, we have —b < a = |a| < b, so in particular |a| < b, while in the second case we have
—b <a=—|a|] <b, so in particular —b < —|al, or |a| < b.) |

Example 2.4 Consider the vectors ¥ = (1,2,3) and i = (—2,0,4) in R®. Let us verify all
three inequalities. First, the Cauchy-Schwartz inequality: since 100 < 280 implies 10 < /280,
we have

|3_5:‘7| = |<172’3>'<_27074>|
— |—240+12
= 10
< V280

= V14V20
|<172733 >||<_27034>|
= |7l

Nezxt, the triangle inequality: because

54=14+20+20 = (V14)>+2-10+ (V20)?
< (V142 +2- V280 + (vV20)? = (V14 + v20)?

we have /54 < /14 + m, and so

Z+y] = [(1,2,3) +(—2,0,4)|
= [(=1,2,7)]
= V54
< V14++v20
= |<172’3>|+|<_270’4>|
= |2+ y]

Finally, the reverse triangle inequality: Since 20 < 56 = 4 - 14, we have v20 < 2+/14 and



therefore V20 — V14 < 14, which means

|12 — I7]]

T VAN |

|1(1,2,3)] = [(~2,0,4)]

VIT - Va0
V0 - Vi
Vil

(3,2, -1)|

1(1,2,3) — (—2,0,4)]

|7 =]

10



2.2 Limits and Continuity of Real- and Vector-Valued Functions

Let’s just drop the limit/continuity bomb and deal with the carnage afterward, i.e. let’s just
give the dry definition and try to explain its meaning to humans afterward. We say that a

vector-valued function f : R™ — R™ has a limit in R™, which we denote L = (L4,..., Ly,),
at a point a = (aq,...,a,) in R”, and we write
lim f(x) = L (2.6)

if for all ¢ > 0 we can find a § > 0 such that for all x different from a (but near a), the
following property is satisfied:

If d(x,a) <6, then d(f(x),L)) <e. (2.7)
We can rephrase property (2.7) using equation (2.2) as

If |a—x|< 9§, then |L — f(x)| <e. (2.8)

Remark 2.5 Notice that here a and x are points, but we treated them like vectors and
subtracted them and took their magnitude. We could have been pedantic and written & and
X every time we did this, but let’s face it, that would just clutter notation and get us all
anzious about whether we’ve forgotten an arrow or forgot to add an arrow. The larger issue
in the distinction between points and vectors is actually not this, not the pedantry, but rather
a fundamental distinction of what space we’re working with. If we consider the points as
lying on a fized surface S or curve C' or something analogous, then they should definitely stay
points, because adding them might remove their sum from the surface or curve (for example
adding the point (0,1) to the point (0,—1) gives the point (0,0). If we were working on the
circle x? + y? = 1, then their sum would not be on the circle-problem!). But if we’re just
talking about R™ this isn’t a problem, for adding them keeps them in R™. If we get too hung
up on the distinction between points and vectors we run the risk of trying to do Riemannian
geometry instead of Calc 8! Thus, for the remainder of these notes, and for the class, let us
try not to worry too much about the distinction between points and vectors and just treat them
as interchangeable unless the context demands our attention to their difference. |

Next, we say that f : R™ — R™ is continuous at a point a = (a1,...,a,) in R if f has a
limit L there and moreover that limit equals the value of f at a, L = f(a). We can rephrase
all of this in terms of €’s and §’s, if we wanted to, of course. If f is continuous at a, then we
write

lim f(x) = f(a) (2.9)

X—a

Remark 2.6 OK, now let us assess the damage, let us analyze these definitions. First of
all, notice that we have complete freedom in choosing our positive number €. The idea here
is that in the range of f we can make the distance between f(x) to L as small as we want,
provided back in the domain of f we’re within § of our point a, for some §. That is, you
give me a distance you want f to stay within from L, and I can find you a neighborhood of a
which is entirely mapped to within € of L by f. The key point here is that the neighborhood of
a may change depending on how small you want to keep the values of [ from L. If you make
e smaller, you’ll probably have to shrink § and so the neighborhood of a.

The picture you should have in mind is of a large lever. The lever is the function, the handle
is the domain of the function, and the end on the other side of the fulcrum is the range of the
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function. If you push the lever a certain amount, you raise an object another given amount.
The idea of continuity in such a situation is intuitive, namely the lever can’t disappear at one
place and reappear at another, and the way we formalize this intuition is by saying that if
you want to look really really close to a point near the object you’re trying to lift (only e far),
you’ll see the end of the lever there so long as you only wiggle the handle no more than a given
amount (your d-neighborhood). There can be no skipping or disappearing and reappearing in
such a situation, because if something like that happened, we could shrink our e-window to a
distance smaller than the size of the skip, and then the end of the lever would disappear if we
wiggle the handle at all.

There is another benefit to the formalism, namely that it allows you to show when a given
function actually is continuous. Typically that sort of exercise is to be carried out in an
Undergraduate Analysis course, not here. But we gave the definition here for the record, and
to prove one or two results in case anybody’s interested in seeing how this stuff works.

Yet another benefit of this formalism is that it illustrates the philosophy of calculus quite
clearly: What’s important is not what happens at a point a, but near a point a. |

Remark 2.7 Let us look at the case where m = 1, i.e. the case of a real-valued function
f:R™ —» R. In the case of R, the magnitude is simply the absolute value, for if x = (x1),

then |x| = |(z1)| = V22 = |z1]. [ |

Example 2.8 Consider the function f : R?> — R given by f(z,y) = x? + y%. I claim it
is continuous at any point (a,b) and can show this directly by applying the reverse triangle
inequality:

[f(2,y) = fla,b)] = [(@* +9%) = (@® + )| = [|(z,9)| = (@, )]| < |(2,9) — (a,D)]

so that for any € > 0 we can just choose 6 = €, and then we get that ‘(m,y) — (a, b)| <d=c¢
implies | f(x,y) — f(a,b)| < e. [ ]

Example 2.9 Let f: R? — R? be given by f(x,y,2) = (20 — 3y + 2, —x +y + 22). Let us
show that f is continuous at every point a = (a,b,c) in R3. Toward this end, let us note that
for any v = (u,v,w) we have

Il = [f (w0, w)]
= |2u—3v+w, —u+v+2w)|

= V©Qu—-3v+w?+ (—u+v+2w)?

— \/[(27 ~3,1) - (u, ”»“0]2 + [(4, 1,2)- (u,v,w)]2

< \/[(2, =3, D)||(u, v, w)|}2 + [|(71, 1, 2)\|(u,fu,w)|}2 Cauchy-Schwartz ineq.
= V2 -3, DP(w,v,w)2 + (=1, 1,2)]?|(u, v, w)
= \/[|(27 =3, D)2 + (=1, 1,2)[2]|(u, v, w)[?
= V12 -3, )P +[(-1,1,2)PV|(u,v,0)?
VE@+9+1) + (1 +1+4)|(u,v,w)|
= V20[v|

Consequently, since f(x) — f(a) = f(x —a), i.e. f(z,y,2)— fla,b,c)= f(z—a,y—b,z—c)
(check this!), we have

[f(x) = f()| = [f(x —a)| < V20|x — af
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Thus, for any € > 0 that we pick we can find our § > 0, namely § = \/%, for then, whenever
|x — a| < §, we have

|f(X)_f(a)|S@|x—a\<@6:mﬁzg

Voila! We have shown that limy ., f(x) = f(a) for any a = (a,b,c) in R3. |

Remark 2.10 This example is a lot harder than what you are asked to do on homeworks
or tests, but the method used in it is universally applicable. The basic idea is to try get an
inequality of the form

[f(x) — f(a)| < C|x — a

for all x and y in R™ for some positive constant C. If you get to this point, you’re home
free (but beware, it’s not always possible; a good example is the function f : R — R given
by f(z) = 1/x). The intuition is clear: let x approach a, then you squeeze |x — al|, which
consequently squeezes |f(x) — f(a)| by a proportionate amount. Formally, say you want to
squeeze |f(x) — f(a)| to under e, then all you have to do is squeeze |x — a| to under £/C.

As a matter of fact, if you get an inequality of the type |f(x) — f(a)] < C|x — a|,
you basically succeeded in showing continuity. You can just say

[f(x) - f(@)| <Clx—a] =0

and you’re done. This obviously squeezes out the result limy_,, f(x) = f(a). Do
this on exams! |

Theorem 2.11 If f = (f1,..., fm) : R" = R™, then f is continuous if and only if each of
the component functions f; : R™ — R is continuous. |

The proof of this theorem is a simple consequence of the fact that

o = ail < V(@1 — a2+ + (2 —an)? = |x — ] < Vi max |z; —ay|

for all a = (ay,...,a,) and x = (z1,...,2,) (Check this!) and then chasing the definition of
continuity around. We omit the full tedious proof. The upshot of this very important theorem,
however, is that we don’t actually need to study the continuity of vector-valued functions to
know what’s going on. We need only study real-valued functions, for every vector-valued
function is made up of real-valued component functions!

Theorem 2.12 Sums, products, scalar multiples, quotients (so long as the denominator does
not go to 0), and compositions of continuous functions are continuous. |

We also omit the proof of this theorem, as it’s a lot of chasing ¢’s and §’s. I recommend taking
the undergraduate analysis course or looking at one of the references below for full details.
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Remark 2.13 How does one show discontinuity ? There are three basic reasons a function
f may be discontinuous.

1. First, the limit may not exist. A single variable example of this type of problem is

encountered with the function f(x) = le'

=Tz

Ay

A
Y
S

Y

The limit from the left and the limit from the right do not agree at x = 1. In two or
more dimensions this problem manifests itself in even more varied ways, for the simple
reason that a given point, say in R?, call it a = (a,b), may be approcated from more
than two ways (not just from the left and the right). It can be approached along any
path, even curved paths. A simple example of this is f(x,y) = ﬁ Approaching
(0,0) along the line x = 0, we see that f has a constant value of 0, while approaching
(0,0) along the line y = x we see that f has a constant value of 1/2. These two are not
the same z-values, so f cannot even have a limit at (0,0), even if we defined it to have
some value there. You can see the rupture in the graph of f:

2. Second, the limit may exist, but the value of the function may not be equal to that of the
limit. For example,

$2y -
) = | P #@w)#@ﬂ)
1, if (z,y) = (0,0)
The limit as (x,y) approaches (0,0) is 0, but the value of f at (0,0) is 1. This is
analogous to the many Calc 1 examples, such as

B 22, ifr#£2
fwy_{L ifz=2

This is called a removable discontinuity. Let us prove that lim, ) 0,0y f(2,y) = 0.
This is easy, for we have the inequality

.T?Qy
= T VR < VT = () — (0,0)

22 + 92

2%y
22 + 42

|f(x,y) _O| =
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on account of a:2m-:y2 <1 for all (x,y) in R%. By the above Remark 2.10 we are done,

for |(z,y) — (0,0)] = 0 by assumption.

3. Third, the function is not defined there and/or escapes to infity or negative infinity.
For example, f(x,y) = 1/v/22+y? as (z,y) goes to (0,0). This is exactly the two

dimensional analog of the function f(x) = 1/|z|. You can see this by noting that
Vx4 y? = |(x,y)|, so the function is f(x) = 1/|x|, in fact. ]
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2.3 Further Examples

sin &

Example 2.14 f(z,y) =

is continuous on the square [—%, 5] x [0, ], because cosy

is nonzero and continuous on [0, %], and it’s reciprocal is nonzero there, and also sinx and
therefore €% is continous, so their quotient is continuous. ]

Example 2.15 f(z,y) = Y is not continuous at (0,0), for if we approach (0,0) along

the line x = —y, we get f(z,y) = f(—y,y) = :—gz = —1, while if we approach (0,0) along the

line x = 2y we get f(z,y) = f(2y,y) = % = 3. [

Y

Example 2.16 f(z,y) = is not continuous at (0,0), for if we approach (0,0) along

2 +y2
the line x = y we get that f(x,y) = f(x, x) = 0, while if we approach (0,0) along the line
x = 2y we get that f(x,y) = f(2y,y) = 3y :%. [ |

Example 2.17 f(x,y) = % is not continuous at (0,0). Taking x,y > 0, then f(z,y) =1,
Y
while taking x > 0 and y < 0, say, we have f(x,y) = —1. [ |

Example 2.18 f(x,y) = 2337—5— is not continuous at (0,0), for look at the curves y = 0,
T Y

y =122 andy = 222%. f has values 1, 1/2 and 1/3, respectively, on those curves as it approaches
(0,0). |

Example 2.19 The function f(z,y) = 3z — 2y + 5 is continuous everywhere, for it is a
polynomial, indeed it is a sum of scalar multiples of simple monomials. But we could also
prove it’s continuity by use of the triangle inequality

|f(z.y) = fla,b)] = [(Bz—2y+5)— (3a—2b+5)|
= [Blz—a)—-2(y—b)
< BlE-a)l+]-2y-"b)
= 3lz—al+2ly -1

3\/x—a)2—|—2\/

< 3V(z—a)?+ (y—10)? +2\/x—a )2+ (y —b)?
(3+2)\/($—a)2 +(y—b)?
= 5|(z,y) — (a,b)| = 0
>y +
PR w200 -
Example 2.20 Let f(z,y) = < 222 + 2y . Then f is continuous every-
0, (z,y) = (0,0)
where, including (0,0), for so long as (x,y) # (0,0) we can simplify

Py +ay®  ay(e® +y?)
202 + 2y a?+y?

f(z,y) =

and the limit lim, ) 0,0y Ty = 0. -
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sin(2+/x? + y2)

- s ) O’ 0 . .
Example 2.21 Let f(x,y) = 322 4 12 (@,9) # ( ) Then f is continuous
2, (z,y) = (0,0)
everywhere, including (0,0), for if we use polar coordinates we get
) ) sin(2y/ax2+y%) .. sin2r 2. sin2r 2
1 = 1 — =] =-1 =-=f(0,0) &
(2.) 2 (0,0) f@y) () 2(0.0)  3/22 1 Y2 o0 3r 3ro0 2r 3 = 0.0
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