
Calculus I-II Review Sheet

1 Definitions

1.1 Functions

A function is f is increasing on an interval if x ≤ y implies f(x) ≤ f(y), and decreasing if
x ≤ y implies f(x) ≥ f(y). It is called monotonic if it is either increasing or decreasing on its
entire domain.

Example 1.1 ex is increasing on (−∞,∞) and lnx is increasing on (0,∞). f(x) = 1/x
is decreasing on (−∞, 0) and on (0,∞). The sine function is increasing on [−π/2, π/2],
[3π/2, 5π/2], etc. �

A function f(x) is proportional to another function g(x) if there is a nonzero constant k
such that f(x) = kg(x).

Example 1.2 The force of gravity F between two masses M and m is proportional to the
inverse square function of the distance between them, r, namely

F =
GMm

r2

Here k = GMm and g(r) = 1/r2. �

The graph of a function f is concave up if it bends upward as we move from left to right,
that is if, when we pick two points (x1, y1) and (x2, y2) on the graph of f , the graph lies
below or on the line segment joining those points on that inteval. Similarly, the graph of f is
concave down if it bends downward, or if the graph of f lies above or on any line segment
joining two points on its graph. An inflection point is a point (x, f(x)) on the graph of f
at which the graph changes concavity (or equivalently just the x value of that point).

Example 1.3 The cosine function is concave up on [π2 ,
3π
2 ] and concave down on [−π2 ,

π
2 ],

etc. It has inflection points at odd multiples of π/2. �

A function f is said to be even if f(−x) = f(x) and odd if f(−x) = −f(x). Even functions
are symmetric about the y-axis, while odd ones are symmetric about the origin.

Example 1.4 The cosine function is even, f(x) = |x| is even, and f(x) = e3x
2

is even,
while the sine function is odd, f(x) = x3 is odd, and f(x) = arctan(x) is odd. �

1.2 Limits and Continuity

Suppose f is defined on an interval around a given real number c, except perhaps at x = c
itself. The limit of f as x approaches a given real number c is a real number L satisfying the
following condition: for all ε > 0 there is a δ > 0 such that

|x− c| < δ and x 6= c
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implies
|f(x)− L| < ε

In this case we write
lim
x→c

f(x) = L

Remark 1.5 In plain English, this means that the limit L exists provided the following holds:
however small I want to make my ε-window on the y-axis around L, I can find a small enough
δ-window on the x-axis around c which is mapped by f entirely into the ε-window. �

Remark 1.6 Note the logical implications: I have freedom to choose ε. I can choose it to
be one in a billion, whatever I want. But once chosen, I’m typically restricted in my choice
of δ. For example, if f(x) = x2 and L = 100, then clearly c = 10, and to show that the limit
as x approaches 10 is 100, I need to find a δ for any given ε. Suppose I’ve chosen my ε, say
ε = 1/1000. Then you can check that a good enough δ is δ = 1/21000. It’s not the only one,
since I can pick it to be smaller than this, but I am restricted by how big I can make it. It
can’t be much bigger than that. �

Remark 1.7 Note also that the definition of limit includes absolute values around x − c.
We write |x− c| and this implies the existence and equality of the left and right limits,

lim
x→c−

f(x) and lim
x→c+

f(x)

respectively. �

Example 1.8 The function f(x) = x−1
|x−1| has left and right limits as x approaches 1, but the

two limits are not equal. Hence f has no limit at x = 1. �

We can analogously define
lim

x→±∞
f(x)

The difference is we can’t use the δ part of the definition. The ε part is the same, we can
choose any ε > 0 such that |f(x)−L| < ε under some appropriate condition on x. It’s just that
condition can’t be the existence of δ such that |x− c| < δ (because c =∞ and |x−∞| =∞,
which is never less than δ), so instead we demand the existence of an M > 0 such that x ≥M
implies |f(x)− L| < δ.

A function f is continuous at a point x = c if the limit limx→c f(x) = L exists and moreover
L = f(c), i.e. if

lim
x→c

f(x) = f(c)

We say f is continuous on an interval [a, b] or (a, b), etc., if it is continuous at all points
in that interval.

Example 1.9 All polynomials are continuous on (−∞,∞). All rational functions p(x)/q(x)

are continuous except at zeros of q(x). For example, 2x2+3
x2−5 is continuous everywhere except

at ±
√

5. The exponential function ex is continuous on (−∞,∞), the log function lnx is
continuous on (0,∞). The sine and consine functions are continuous on (−∞,∞). The
absolute value function f(x) = |x− 2| is continuous everywhere on (−∞,∞). �
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Discontinuities, or points of discontinuity of f , are x-values where f is not continuous.
For example 0 is a point of discontinuity of cscx and of f(x) = 1/x. A removable disconti-

nuity is one that can be “plugged”, e.g. x = −2 is a removable discontinuity of f(x) = x2−4
x+2 .

An essential discontinuity is one that cannot be “plugged”, typically because f goes to
±∞ near that point, for example x = 1 is an essential discontinuity of f(x) = 2/(x − 1). A
jump discontinuity is a discontinuity where f “jumps” a finite amount near it, for example
x = 1 for f(x) = x−1

|x−1| .

1.3 Rate of Change and the Derivative

The average rate of change of a function f between x = a and x = b is defined to be the
slope of the line connecting the points (a, f(a)) and (b, f(b)) on the graph of f :

average rate of change =
f(b)− f(a)

b− a

If we define h = b−a, then b = a+h, and the average rate of change between a and b = a+h
becomes the difference quotient:

f(a+ h)− f(a)

h

If the limit of the difference quotient as h approaches 0 exists, then we say that f is differen-
tiable at x = a and we call this limit the derivative of f at a. It is a real number, denoted
equivalently by

f ′(a) ≡ df

dx
(a) ≡ dy

dx

∣∣∣∣
x=a

= lim
h→0

f(a+ h)− f(a)

h

If f is differentiable on an entire interval, then varying the point a, in other words letting x
vary, we get a function, the derivative function f ′(x). One of our tasks is to find various
derivative functions for well-known functions.

Example 1.10 Common derivative functions are the following:

1. (xn)′ = nxn−1 (power rule)

2. (sinx)′ = cosx

3. (cosx)′ = − sinx

4. (tanx)′ = sec2 x

5. (ex)′ = ex

6. (lnx)′ = 1
x

7. (ax) = (ln a)ax

8. (arctanx)′ = 1
1+x2

9. (arcsinx)′ = 1√
1−x2

�
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Remark 1.11 To compute more complicated derivatives, such as those of xex
2

, for example,
we will need to know how to break up the process of taking a derivative into several steps
involving only derivatives of things we know how to compute, such as (1)-(6) above. For
example, we know how to take the derivative of x, x2 and ex, and we will develop methods
to compute (xex

2

)′ in terms of these easier ones. This is the content of the sum, product,
quotient and chain rules below. �

The derivative f ′(a) at x = a can be interpreted as the slope of the tangent line to the
graph of f at the point (a, f(a)). Since we have a slope, f ′(a), and a point, (a, f(a)), we can
find the equation of the tangent line using point-slope:

y − f(a) = f ′(a)(x− a)

Adding f(a) to both sides gives the equation for the tangent line, which we also call the
linear approximation to f near x = a or local linearization near x = a:

y = f(a) + f ′(a)(x− a)

This is the key idea behind the idea of a derivative, to approximate a complicated function
f(x) with the simplest one possible, a line, at least locally. The tangent line is an honest-to-

goodness approximation of f near x = a, because we know that as x→ a, f(x)−f(a)x−a → f ′(a),
i.e. from the definition of limit we get

f(x)− f(a)

x− a
≈ f ′(a) ⇐⇒ f(x)− f(a) ≈ f ′(a)(x− a) multiply both sides by (x− a)

⇐⇒ f(x) ≈ f(a) + f ′(a)(x− a) add f(a) to both sides

Example 1.12 Let us approximate the value of f(x) = esin x near x = π using local
linearization, say at x = 3 which is near x = π. Since f ′(x) = esin x · cosx, we have
f ′(π) = esinπ · cosπ = −1, and because f(π) = esinπ = 1, we get

f(x) ≈ f(π) + f ′(π)(x− π)

= 1− (x− π)

= 1 + π − x

Therefore,
f(3) ≈ 1 + π − 3 = π − 2 ≈ 1.14 �

The error in the tangent/linear approximation is the difference between the actual value f(x)
at x and the approximate value obtained from the tangent line at x near x = a:

E(x) = f(x)−
[
f(a) + f ′(a)(x− a)

]
It is a theorem, not hard to prove, that

lim
x→a

E(x)

x− a
= 0

It is also a fact, not proven in the book until the section on Taylor’s theorem, that

E(x) ≈ f ′′(a)

2
(x− a)2
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Example 1.13 The error in the previous example is

E(x) = f(x)− (1 + π − x) = esin x + x− 1− π

so, for example our approximation at x = 3 is off by about

E(3) = esin 3 + 3− 1− π ≈ 0.00997

Not bad! And, to complete this example, note that

f ′′(π)

2
(3− π)2 =

1

2
(cos2 3esin 3 − (sin 3)esin 3)(3− π)2 ≈ 0.00968

which is indeed close to E(3). �

1.4 Optimization

A critical point of f is a point x = a where f ′(a) = 0, that is critical points are zeros of the
derivative of f . Hence, when looking for them you have to solve the equation f ′(x) = 0 for x.
The y-value of f at a critical point y = f(a) is called a critical value. Note that f(a) 6= 0
in general—it’s f ′(a) that equals 0!

A local minimum of f is a point x = a such that f(x) ≥ f(a) near a, and a local maximum
of f is a point x = a such that f(x) ≤ f(a) near a. These are upgraded to global minimum
and global maximum if f(x) ≥ f(a) or f(x) ≤ f(a), respectively, for all x in the domain of f
under consideration, not just those nearby.

1.5 The Riemann Integral

Let [a, b] be a nonempty closed interval in (−∞,∞) and let f : [a, b]→ (−∞,∞) be bounded
and continuous. Let P = (a = x0 < x1 < · · · < xn = b) be a partition of [a, b], that is an
increasing finite increasing sequence of points in the interval. For a given partition P choose,
for each i = 0, 1, . . . , n, an arbitrary ti in [xi−1, xi]. The Riemann Sum of f for a given
partition P is then defined as

SP =

n∑
i=1

f(ti) · (xi − xi−1)

If we choose the xi such that xn − xn−1 = xn−1 − xn−2 = · · · = x1 − x0, that is if

∆x =
b− a
n

and xi = a+ i∆x

then the Riemann sum is written simply as

SP =

n∑
i=1

f(ti)∆x

If we choose the left endpoint every time, ti = xi, then we get the left Riemann sum,

SL =

n−1∑
i=0

f(xi)∆x
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and if we choose the right endpoint, ti = xi + 1, then we get the right Riemann sum,

SR =

n∑
i=1

f(xi)∆x

Similarly, we have the upper and lower Riemann sums, U and L, obtained by choosing ti
in [xi, xi+1] such that f(ti) = maxxi≤t≤xi+1

f(t) and f(ti) = minxi≤t≤xi+1
f(t), respectively

(since f is continous, we can find such ti by the Extreme Value Theorem!). We can also
choose ti to be the midpoint of [xi, xi+1], in which case we obtain the midpoint Riemann
sum.

Remark 1.14 Note that U does not in general equal SL or SR, and likewise with L. A good
example is the upper half of the circle, f(x) =

√
1− x2 on [−1, 1]. Try to compute SL, SR,

U and L. �

Example 1.15 Let us compute the Riemann sum for f(x) =
√

1− x2 on [−1, 1], and so
obtain several approximations of the upper half of the unit circle. Let us choose n = 4 for
convenience, which means x0 = −1, x1 = − 1

2 , x2 = 0, x3 = 1
2 , and x4 = 1, and so

P = (−1,− 1
2 , 0,

1
2 , 1) is our partition of [−1, 1]. Let us compute the left Riemann sum first:

this means choosing ti = xi, and since ∆x = 1−(−1)
4 = 1

2 , we have

SL =

4−1∑
x=0

f(xi)∆x

= f(−1) · 1

2
+ f(−1

2
) · 1

2
+ f(0) · 1

2
+ f(

1

2
) · 1

2

=

(√
1− (−1)2 +

√
1− (−1/2)2 +

√
1− 02 +

√
1− (1/2)2

)
· 1

2

=

(
0 +

√
3

2
+ 1 +

√
3

2

)
· 1

2

=

√
3 + 1

2

Similarly, by choosing ti = xi+1, we get the right sum,

SR =

4−1∑
x=0

f(xi+1)∆x

= f(−1/2) · 1

2
+ f(0) · 1

2
+ f(1/2) · 1

2
+ f(1) · 1

2

=

(√
1− (−1/2)2 +

√
1− 02 +

√
1− (1/2)2 +

√
1− 12

)
· 1

2

=

(√
3

2
+ 1 + 1 +

√
3

2

)
· 1

2

=

√
3 + 1

2

The upper sum requires a little bit of extra work. We have to figure out where f is largest on
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each subinterval [xi, xi+1], and this will vary depending on i. Let us look at a picture:

√
1− x2

Thus, for example, on the interval [x0, x1] = [−1,− 1
2 ], it is clear that f is largest when

x = − 1
2 , sowe must choose t0 = − 1

2 . Proceeding analogously, we get t1 = 0, t2 = 0, and
t3 = 1

2 , and so

U =

n−1∑
i=0

f(ti)∆x

= f(−1

2
) · 1

2
+ f(0) · 1

2
+ f(0) · 1

2
+ f(

1

2
) · 1

2

=

(√
1− (−1/2)2 +

√
1− 02 +

√
1− 02 +

√
1− (1/2)2

)
· 1

2

=

(√
3

2
+ 1 +

√
3

2
+ 0

)
· 1

2

=

√
3 + 2

2

Similarly, to compute the lower Riemann sum, we see from the picture

√
1− x2

that, for example on [x0, x1] = [−1,− 1
2 ], f is smallest at x = −1, so we will need t0 = −1,

and proceeding analogously we get that t1 = − 1
2 , t2 = 1

2 and t3 = 1. Thus,

L =

n−1∑
i=0

f(ti)∆x

= f(−1) · 1

2
+ f(−1

2
) · 1

2
+ f(

1

2
) · 1

2
+ f(1) · 1

2

=

(√
1− (−1)2 +

√
1− (−1/2)2 +

√
1− (1/2)2 +

√
1− 12

)
· 1

2

=

(
0 +

√
3

2
+

√
3

2
+ 0

)
· 1

2

=

√
3

2

As a final observation, we note that L ≤ SL = SR ≤ U . �
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The next step is, of course, refining the partition of [a, b] and summing over more and more
rectangles, thus, hopefully, getting a more accurate approximation to the ’actual’ area. A
function f is said to be Riemann integrable on [a, b] if, no matter how the choice of
partitions P of [a, b] is made, the limit of these Riemann sums as we add more and more
rectangles,

lim
n→∞

SP

n∑
i=1

f(ti) · (xi+1 − xi)

exists as a real number. It is a fact, proven later in undergraduate analysis, that the choice of
partition doesn’t matter, so you may choose, if you want, the left Riemann sum every time.
In this case, if the limit exists, f is said to be Riemann integrable on [a, b] and the value
of this limit is called the Riemann integral or definite Riemann integral of f on [a, b],
and this limit is denoted∫ b

a

f(x) dx = lim
n→∞

SP = lim
n→∞

n−1∑
i=0

f(ti)(xi+1 − xi)

If we choose ∆x = xi+1 − xi to be constant and equal to b−a
n , then we may write

∫ b

a

f(x) dx = lim
n→∞

n−1∑
i=0

f(ti)∆x
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2 Theorems

Theorem 2.1 (Limit Laws) Let k be a constant real number. Then,

1. lim
x→c

(kf(x)) = k lim
x→c

f(x)

2. lim
x→c

(
f(x) + g(x)

)
= lim
x→c

f(x) + lim
x→c

g(x)

3. lim
x→c

(
f(x)g(x)

)
=
(

lim
x→c

f(x)
)(

lim
x→c

g(x)
)

4. lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
if g(x) 6= 0

5. lim
x→c

k = k (we think of k as a constant function)

6. lim
x→c

x = c (we think of x as the function f(x) = x) �

Theorem 2.2 (Continuity Laws) Let k be a constant real number and suppose f and g
are continuous on an interval [a, b] (or an open or half-open interval, it doesn’t matter). Then,
the following functions are continuous:

1. kf(x)

2. f(x) + g(x)

3. f(x)g(x)

4.
f(x)

g(x)
if g(x) 6= 0

5. (f ◦ g)(x) �

Theorem 2.3 (Intermediate Value Theorem) If f is continuous on a closed and bounded
interval [a, b] and k is a y-value between f(a) and f(b) (whether f(a) ≤ k ≤ f(b) or
f(b) ≤ k ≤ f(a)), then there is at least one number c between a and b such that f(c) = k. �

Remark 2.4 This means that the entire range of y-values between f(a) and f(b) is hit by
f on the interval [a, b], possibly more than once. �

Example 2.5 Since f(x) =
√
x is continuous on [4, 100], and since f(4) = 2 and f(100) =

10, all numbers between 2 and 10 are hit. For example 5: there is a number, namely c = 25,
in between 4 and 100, such that f(c) = 5. �

Example 2.6 Consider the polynomial p(x) = 5x3 +πx+1. It has at least one root between
−1 and 0, because p(−1) = −4 − π and p(0) = 1, and since 0 lies in between these two y
values and p(x) is continuous on [−1, 0], we know there is a number c between −1 and 0 such
that p(c) = 0. That’s our root. �
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Example 2.7 Consider f(x) = 1/x. Then f(−1) = −1 and f(1) = 1, but the Intermediate
Value Theorem doesn’t apply to give a c between −1 and 1 such that f(c) = 0, because f is
not continuous on [−1, 1]. Indeed, f(x) never equals 0. �

Theorem 2.8 (Extreme Value Theorem) If f is a continuous function on a closed and
bounded interval [a, b], then f attains a (global) minimum and a (global) maximum on that
interval, that is maxa≤x≤b f(x) and mina≤x≤b f(x) exist as real numbers. This means there
are points x1 and x2 in the interval [a, b] such that

f(x1) = max
a≤x≤b

f(x) and f(x2) = min
a≤x≤b

f(x) �

Example 2.9 The parabola f(x) = −x2 + 6x− 1, being a polynomial, is continuous every-
where, so for example on [0, 4] it must achieve its minimum and its maximum. In fact,

f(0) = min
0≤x≤4

f(x) = −1 and f(3) = max
0≤x≤4

f(x) = 8

as can be seen from the graph:

Of course, we don’t need the graph, because (using the first and second derivative tests) we
can actually find the maximum and minimum analytically as follows:

1. First, find all critical points, which means ompute the derivative, set it equal to zero
and solve for x: f ′(x) = −2x+ 6 = 0, so x = 3 is a critical point.

2. Use, e.g. the second derivative test to classify it: f ′′(3) = −2 < 0, so it’s a local max.

3. Check the value of f at the critical point (which lies in the interval [0, 4]) against the
value of f at the endpoints 0 and 4: f(0) = −1, f(3) = 8 and f(4) = 7, so it looks like
0 is the global min and 3 is the global max here, i.e. f(0) = min0≤x≤4 f(x) = −1 and
f(3) = max0≤x≤4 f(x) = 8. �

Example 2.10 The function f(x) = 1
x is continuous on (−∞, 0) ∪ (0,∞), but on (0, 2) the

Extreme Value Theorem doesn’t apply, because (0, 1) is not a closed interval. As it turns out,
f(x) has neither a (local or global) max or min on (0, 1) (it just gets bigger and bigger without
bound as x approaches 0 and it gets closer and closer to 1/2 as x approaches 2, but it never
reaches 1/2, and so it never reaches a smallest value.
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Theorem 2.11 (Differentiation Rules) If two functions f and g are differentiable at x =
a and k is a constant, then the functions c (the constant function), cf(x), f(x) + g(x),
f(x)g(x), f(x)/g(x) (when g(x) 6= 0), and (f ◦ g)(a) (when f is differentiable at b = g(a))
are all differentiable at x = a, and moreover satisfy the following formulas:

(1) c′ = 0

(2) (cf)′(a) = cf ′(a) (constant factor rule)
}

(linearity)
(3) (f + g)′(a) = f ′(a) + g′(a) (sum rule)

(4) (fg)′(a) = f(a)g′(a) + f ′(a)g(a) (product rule)

(5)

(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g2(a)
(quotient rule)

(6) (f ◦ g)′(a) = f ′
(
g(a)

)
· f ′(a) (chain rule)

�

Theorem 2.12 (Differentiability Implies Continuity) If f is differentiable at a point
x = a, then it is continuous at x = a. Consequently, if f is differentiable on an open interval
(a, b), then it is continuous on that interval. �

Remark 2.13 Of course the converse is not true. You can have a continuous function which
is not differentiable. For example f(x) = |x| is continuous at x = 0 but not differentiable there
(the left and right limits of the difference quotient as h→ 0 don’t agree). �

Theorem 2.14 (Mean Value Theorem) If f is continuous on [a, b] and differentiable on
(a, b), then there is some c between a and b such that

f(b)− f(a) = f ′(c)(b− a) �

Example 2.15 The Mean Value Theorem is used for many things, but the simplest of its
uses is in proving inequalities. For example, let us prove the inequality

sinx ≤ x

on [0,∞). The trick is to define a new function, h(x), as the difference of the two functions
under consideration, that is let

h(x) = x− sinx
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Then we need only show that h(x) ≥ 0 to prove our assertion. Now, since for any x > 0 we
know that h is continous on [0, x] and differentiable on (0, x), the MVT applies to give the
existence of a c between 0 and x such that

h(x)− h(0) = h′(c)(x− 0)

Now, h(0) = 0 − sin 0 = 0, and moreover h′(x) = 1 − cosx ≥ 0, which, along with the fact
that x > 0, implies h′(x)(x− 0) ≥ 0, so we have

x− sinx = h(x) ≥ 0

on [0,∞), which is what we set out to prove. �

Corollary 2.16 (Constant Function Theorem) Let f be continuous on [a, b] and differ-
entiable on (a, b). Then f ′(x) = 0 on all of (a, b) if and only if f is constant on the interval.

Corollary 2.17 Let f and g be continuous on [a, b] and differentiable on (a, b). If f ′(x) =
g′(x) on (a, b), then f and g differ by a constant, i.e.

f(x) = g(x) + c

for some constant c.

Remark 2.18 This is important for integrals and anti-derivatives. Namely, all anti-derivatives
differ by a constant, and so the most general antiderivative of a function is written

∫
f(x)dx =

F (x) +C where F (x) is some specific antiderivative and C is an arbitrary constant, that con-
stant showing up in the last corollary. �

Corollary 2.19 Let f be differentiable on an open interval (a, b).

(1) If f ′(x) ≥ 0 on (a, b), then f is increasing on (a, b).

(2) If f ′(x) ≤ 0 on (a, b), then f is decreasing on (a, b).

Moreover, if the inequalities are strict, then f is strictly increasing or strictly decreasing,
respectively. �

Corollary 2.20 (First Derivative Test) Let f be differentiable on an open interval con-
taining a critical point x0 of f , i.e. one for which f ′(x0) = 0.

(1) If f ′(x) > 0 for x < x0 and f ′(x) < 0 for x > x0, then x0 is a local maximum of f .

(2) If f ′(x) < 0 for x < x0 and f ′(x) > 0 for x > x0, then x0 is a local minimum of f .
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Corollary 2.21 (Second Derivative Test) Let f be twice differentiable on an open in-
terval containing a critical point x0 of f , i.e. one for which f ′(x0) = 0.

(1) If f ′′(x0) > 0, then x0 is a local minimum of f .

(2) If f ′′(x0) < 0, then x0 is a local maximum of f .

(3) If f ′′(x0) = 0, then no conclusion can be drawn. x0 may be a local minimum or a local
maximum or a point of inflection. �

Theorem 2.22 (Inverse Fuction Theorem) Let f be continuous and invertible on [a, b]
and differentiable at some point x0 in [a, b]. If f ′(x0) 6= 0, then f−1 is differentiable at f(x0)
and if we let y0 = f(x0), then

(f−1)′
(
y0
)

=
1

f ′(x0)
�

Theorem 2.23 (L’Hôspital’s Rule) Let f and g be differentiable on (a, b) and let g′(x) 6=
0 on (a, b). We allow a = −∞ and b = ∞. If for some x0 in [a, b] we have limx→x0 f(x) =
limx→x0

g(x) = 0 or limx→x0
f(x) = limx→x0

g(x) = ±∞, and if the limit

lim
x→x0

f ′(x)

g′(x)
= L

exists as a real number or as ±∞, then the limit limx→x0

f(x)
g(x) exists as a real number or ±∞,

and

lim
x→x0

f(x)

g(x)
= lim
x→x0

f ′(x)

g′(x)
= L �

Theorem 2.24 If f and g and continuous on [a, b] and k is a constant, then (linearity)∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx

and if f(x) ≤ g(x) on [a, b], then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx

As a consequence, if m ≤ f(x) ≤M on [a, b], then

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a) �
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Theorem 2.25 Let f be Riemann continuous on [a, b]. Then for all c in [a, b] we have∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx �

Theorem 2.26 f f is continous on [a, b], then∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

Remark 2.27 This is more a matter of convention than a theorem. �

Theorem 2.28 (Average/Mean Value Theorem for Integrals) If f is continuous on
[a, b], then there is a number c in [a, b] such that

f(c) =
1

b− a

∫ b

a

f(x)dx

Theorem 2.29 (Fundamental Theorem of Calculus I) If f is continuous on [a, b] and
differentiable on (a, b), and if f ′ is continuous on (a, b), then∫ b

a

f ′(x) dx = f(b)− f(a) �

Theorem 2.30 (Fundamental Theorem of Calculus II) If f is continuous on [a, b],
then the function F : [a, b]→ R given by

F (x) =

∫ x

a

f(t) dt

is continuous on [a, b] and differentiable on (a, b), with derivative given by

F ′(x) = f(x) �

Remark 2.31 This theorem, FTC II, gives the existence of antiderivatives for any Riemann
integrable function on [a, b]. However, this result is only of theoretical interest, as the form
of the antiderivative, F (x) =

∫ x
a
f(t) dt, isn’t really computationally helpful. However, it is

a useful for familiarizing yourself with the notation and definitions. For example, if we want
to take the x-derivative of F (sinx), this is straightforward, just apply the chain rule: letting
y = sinx,

d

dx
F (sinx) =

dF

dy

dy

dx
= f(x) cosx

But it’s slightly harder to see in the form d
dx

∫ sin x

a
f(t) dt. However, the two expressions are

the same!
d

dx

∫ sin x

a

f(t) dt =
dF

dy

dy

dx
= f(x) cosx �
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Theorem 2.32 (Integration by Parts) If f and g are continuous on [a, b] and differen-
tiable on (a, b), and if f ′ and g′ are Riemann integrable on [a, b], then∫ b

a

f(x)g′(x) dx =
[
f(x)g(x)

]b
x=a
−
∫ b

a

f ′(x)g(x) dx (2.1)

�

Theorem 2.33 (Change of Variable) If f : [a, b]→ [α, β] is continously differentiable on
[a, b] and g is continuous on [α, β], then∫ b

a

g
(
f(x)

)
f ′(x) dx =

∫ f(b)

f(a)

g(y) dy (2.2)

�
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