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1 Definition of Differentiability and its Basic Properties

Definition 1 Let A ⊆ R and let f : A → R. We say that f is differentiable at a
point a ∈ A if the functional limit

lim
x→a

f(x)− f(a)

x− a

def
= f ′(a)

exists in R (in which case it is called the derivative of f at a), that is,

∀ε > 0, ∃δ > 0,

(
0 < |x− a| < δ =⇒

∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < ε

)

By a change-of-variable, letting h
def
= x−a, so that x = a+h, we can write this limit

in its other familiar form

lim
h→0

f(a+ h)− f(a)

h

def
= f ′(a)

Expanded into its definitional ε-δ terms, this says

∀ε > 0, ∃δ > 0,

(
0 < |h| < δ =⇒

∣∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣∣ < ε

)
We say f is differentiable on A if it is differentiable at every point in A. The set
of all differentiable functions on A is denoted

D(A)
def
= all differentiable functions f on A ■
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Remark 2 The derivative f ′(a) ∈ R, when it exists, is interpreted as the instant
rate of change of y with respect to x, or as slope of the tangent line to the graph of
f at (a, f(a)). Let us take this latter interpretation and find the equation of the
tangent line to graph f at (a, f(a)).

(1) Use point-slope form with P = (a, f(a)) and m = f ′(a) to get an equation of
the tangent line:

y − f(a) = f ′(a)(x− a) =⇒ y = f(a) + f ′(a)(x− a)︸ ︷︷ ︸
equation of tangent line, L(x)

which some of you may remember from calculus as the linear approximation
to f or local linearization of f near a ∈ A, or, again, as the first Taylor
polynomial of f at a ∈ A:

x

y
f(x)

0

(a, f(a))

a

L(x)

L(x)
def
= f(a) + f ′(a)(x− a)

(2) Use the definition of f ′(a) as a functional limit to clarify the idea of approxi-
mation: ∀ε > 0, ∃δ > 0 such that 0 < |x− a| < δ implies∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < ε ⇐⇒ −ε <
f(x)− f(a)

x− a
− f ′(a) < ε

⇐⇒ −ε · (x− a) < f(x)−
(
f(a) + f ′(a)(x− a)︸ ︷︷ ︸

= L(x)

)
< ε · (x− a)

which shows that, if we take δ ≤ 1 just as a precaution, we have ∀x ∈ Vδ(a)

|f(x)− L(x)| < ε|x− a| < ε · δ ≤ ε

so that indeed near x = a

f(x) ≈ L(x) = f(a) + f ′(a)(x− a) ■
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Notation 3 The derivative of f at a ∈ A is variously denoted as

(Lagrange) f ′(a)

(Leibniz)
df

dx
(a) or

d
(
f(a)

)
dx

or
df

dx

∣∣∣
x=a

(Euler) Df(a)

(Newton) ḟ(a)

Each has its virtues. We encounter f ′(a) and df/dx in calculus books, Df(a) is
multivariate analysis, and ḟ(a) in classical physics texts. ■

Definition 4 If A ⊆ R and f ∈ D(A), we have a whole new function, the derivative
function,

f ′ : A → R

f ′(a)
def
= lim

x→a

f(x)− f(a)

x− a

If f ′ ∈ D(A), then we have the second derivative function,

f ′′ : A → R

f ′′(a)
def
= (f ′)′(a)

def
= lim

x→a

f ′(x)− f ′(a)

x− a

Proceeding inductively, we may define the nth derivative function by

f (n) : A → R

f (n)(a)
def
= (f (n−1))′(a)

def
= lim

x→a

f (n−1)(x)− f (n−1)(a)

x− a

Let us denote the set of all k-times differentiable functions on A by

Dk(A)
def
= {f : A → R | ∃f (i) : A → R, for all 0 ≤ i ≤ k} ■
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Lemma 5 lim
x→a

f(x) = f(a) ⇐⇒ lim
x→a

(
f(x)− f(a)

)
= 0.

Proof: Suppose lim
x→a

f(x) = f(a), and observe that lim
x→a

f(a) = f(a) since f(a) is a

constant. Using the difference (functional) limit law we have

lim
x→a

(
f(x)− f(a)

)
=

(
lim
x→a

(
f(x)

)
−
(
lim
x→a

f(a)
)

= f(a)− f(a)

= 0

Conversely, if lim
x→a

(
f(x) − f(a)

)
= 0, then, since lim

x→a
f(a) = f(a), the sum (func-

tional) limit law gives

lim
x→a

f(x) = lim
x→a

(
f(x)− f(a) + f(a)

)
= lim

x→a

[(
f(x)− f(a)

)
+ f(a)

]
= 0 + f(a)

= f(a)

■

Theorem 6 Differentiable functions are continuous, D(A) ⊆ C(A).

Proof: f ∈ D(A) means ∀a ∈ A the limit

f ′(a)
def
= lim

x→a

f(x)− f(a)

x− a

exists in R. Therefore, to show that limx→a f(x) = f(a), we use this definition, the
fact that all polynomials are continuous on R (Corollary 26, Lecture 10), and the
product limit law to conclude

lim
x→a

(
f(x)− f(a)

)
= lim

x→a

(
f(x)− f(a)

)
· x− a

x− a

= lim
x→a

[(
f(x)− f(a)

x− a

)
· (x− a)

]
= f ′(a) · 0
= 0

The lemma then ensures lim
x→a

f(x) = f(a). ■

Remark 7 This is only a set inclusion, so far. Let us show that D(A) is in fact a
vector subspace of C(A). Indeed, it is a real associative subalgebra of C(A). ■
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Theorem 8 (Generic Rules of Differentiation) If f, g ∈ D(A) and c ∈ R,
then c (the constant function), cf , f ± g, fg and f/g ∈ D(A) (the last wherever
g ̸= 0). Moreover, ∀a ∈ A we have

(1) c′ = 0 (constant function rule)

(2) (cf)′(a) = cf ′(a) (scalar multiple rule)

(3) (f ± g)′(a) = f ′(a)± g′(a) (sum/difference rules)

(4) (fg)′(x0) = f(a)g′(a) + f ′(a)g(a) (product rule)

(5)

(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g2(a)
(quotient rule)

Proof: Note that we can prove all of them by the combo of definition of differen-
tiability + functional limit laws:

(1) Viewing c as the range of a function f : A → R, f(x) def
= c, we have

c′ = lim
x→a

c− c

x− a
= lim

x→a
0 = 0

(2) Since (cf)(x)
def
= c · f(x), we have

(cf)′(a) = lim
x→a

(cf)(x)− (cf)(a)

x− a
= lim

x→a
c · f(x)− f(a)

x− a
= cf ′(a)

(3) Likewise (f ± g)(x)
def
= f(x)± g(x), so

(f ± g)′(a) = lim
x→a

(f ± g)(x)− (f ± g)(a)

x− a

= lim
x→a

[
f(x)− f(a)

x− a
± g(x)− g(a)

x− a

]
= f ′(a)± g′(a)

(4) Since (fg)(x)
def
= f(x)g(x), we have

(fg)′(a) = lim
x→a

(fg)(x)− (fg)(a)

x− a

= lim
x→a

f(x)g(x)− f(x)g(a) + f(x)g(a)− f(a)g(a)

x− a

= lim
x→a

[
f(x) · g(x)− g(a)

x− a
+ g(a) · f(x)− f(a)

x− a

]
= f(a)g′(a) + f ′(a)g(a)

(f(x) → f(a) because f ∈ D(A) ⊆ C(A))
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(5) Finally, since
(
f
g

)
(x)

def
= f(x)

g(x) , we have

(
f

g

)′

(a) = lim
x→a

(
f
g

)
(x)−

(
fg
)
(a)

x− a
= lim

x→a

f(x)
g(x) −

f(a)
g(a)

x− a

= lim
x→a

g(a)f(x)− f(a)g(x)

(x− a)g(x)g(a)

= lim
x→a

g(a)f(x)− g(a)f(a) + g(a)f(a)− f(a)g(x)

(x− a)
· 1

g(x)g(a)

= lim
x→a

([
g(a) · f(x)− f(a)

(x− a)
− f(a) · g(x)− g(a)

(x− a)

]
· 1

g(x)g(a)

)

=
g(a)f ′(a)− f(a)g′(a)

g2(a)

(g(x) → g(a) because g ∈ D(A) ⊆ C(A)). ■

Remark 9 We could also prove (2) and (3) directly from the definition of f ′(a) as a
functional limit: Choose a ∈ A and ε > 0. Since f ∈ D(A), ∃δ > 0 so that

0 < |x− a| < δ =⇒
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < ε

|c|

and therefore ∣∣∣∣cf(x)− cf(a)

x− a
− cf ′(a)

∣∣∣∣ = |c|
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣
< |c| · ε

|c|
= ε

Similarly, if f, g ∈ D(A), then ∀a ∈ A, ∀ε > 0, ∃δ1, δ2 > 0 such that

0 < |x− a| < δ
def
= min{δ1, δ2} =⇒



∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < ε

2

and∣∣∣∣g(x)− g(a)

x− a
− g′(a)

∣∣∣∣ < ε

2


so by a triangle inequality we have∣∣∣∣(f ± g)(x)− (f ± g)(a)

x− a
− (f ′ ± g′)(a)

∣∣∣∣
=

∣∣∣∣(f(x)− f(a)

x− a
− f ′(a)

)
±
(
g(x)− g(a)

x− a
− g′(a)

)∣∣∣∣
≤
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣+ ∣∣∣∣g(x)− g(a)

x− a
− g′(a)

∣∣∣∣ < ε

2
+

ε

2
= ε
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The others could also be proven directly, I suppose, but the complications multiply
with the product and quotient rules. We leave these as exercises! ■

Theorem 10 (Power Rule; Polynomials are Differentiable on R)
For all n ∈ N, the monomial xn ∈ R[x] is differentiable everywhere, xn ∈ D(R),
and

(xn)′ = nxn−1

As a result, all polynomials are differentiable everywhere,

R[x] ⊆ D(R) ⊆ C(R)

and the derivative operator d
dx restricts to a linear map on R[x]:

( n∑
k=0

akx
k

)′
=

n∑
k=1

kakx
k−1

Proof: Let us use the algebraic identity

xn − an = (x− a)(xn−1 + xn−2a+ · · ·+ xan−2 + an−1)

We have, ∀a ∈ R,

d(xn)

dx
(a)

def
= lim

x→a

xn − an

x− a

= lim
x→a

����(x− a)(xn−1 + xn−2a+ · · ·+ an−1)

���x− a

= lim
x→a

(xn−1 + xn−2a+ · · ·+ an−1)

= nan−1

Since this is true for all a ∈ R, we conclude that the derivative function is given by
(xn)′ = nxn−1. The action of d

dx on D(R) is linear by (2)-(3) of the previous theorem,

while the action on monomials produces other monomials, so d
dx restricts to a linear

operator on R[x], because polynomials are linear combinations of monomials. ■

We can enlarge this power rule to all rational powers p/q, in two steps, using the
same algebraic identity as in the proof above:
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Theorem 11 (qth Root Power Rule) For all odd q ∈ N we have x1/q ∈
D(R) and x−1/q ∈ D(R−{0}), while for all even q ∈ N we have x1/q ∈ D

(
[0,∞)

)
and x−1/q ∈ D

(
(0,∞)

)
, and their derivative functions are given by

(
x1/q

)′
=

1

q
x(1/q)−1

(
x−1/q

)′
= −1

q
x−(1/q)−1

Proof: Recall that for all real numbers a and b and all p ∈ N we have

aq − bq = (a− b)(aq−1 + aq−2b+ · · ·+ abq−2 + pq−1) (1)

(just foil out the right hand side). With a = (x+ h)1/q and b = x1/q, we get

(
x1/q

)′
= lim

h→0

(x+ h)1/q − x1/q

h
·
(
(x+ h)1/q

)q−1
+
(
(x+ h)1/q

)q−2
x1/q + · · ·+ (x1/q)1−q(

(x+ h)1/q
)q−1

+
(
(x+ h)1/q

)q−2
x1/q + · · ·+ (x1/q)1−q

= lim
h→0

(
(x+ h)1/q

)q − (x1/q)q

h
[(
(x+ h)1/q

)q−1
+
(
(x+ h)1/q

)q−2
x1/q + · · ·+ (x1/q)1−q

]
= lim

h→0

�h

�h
[(
(x+ h)1/q

)q−1
+
(
(x+ h)1/q

)q−2
x1/q + · · ·+ (x1/q)1−q

]
=

1

qx(q−1)/q

=
1

q
x(1/q)−1

which proves the first result. For the second, we have, again by (1),

(
x−1/q

)′
= lim

h→0

(x+ h)−1/q − x−1/q

h

= lim
h→0

1
(x+h)1/q

− 1
x1/q

h

= lim
h→0

x1/q−(x+h)1/q

(x+h)1/qx1/q

h
·
(x1/q)q−1 + (x1/q)q−2(x+ h)1/q + · · ·+

(
(x+ h)1/q

)q−1

(x1/q)q−1 + (x1/q)q−2(x+ h)1/q + · · ·+
(
(x+ h)1/q

)q−1

= lim
h→0

x− (x+ h)

h(x+ h)1/qx1/q
[
(x1/q)q−1 + (x1/q)q−2(x+ h)1/q + · · ·+

(
(x+ h)1/q

)q−1]
=

−�h

�h(x+ h)1/qx1/q
[
(x1/q)q−1 + (x1/q)q−2(x+ h)1/q + · · ·+

(
(x+ h)1/q

)q−1]
= − 1

qx2/qx(q−1)/q

= − 1

qx1+(1/q)

■
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Theorem 12 (Rational Power Rule) If p, q ∈ Z, with q > 0, then we have
xp/q ∈ D(R− {0}) if q is odd, or xp/q ∈ D

(
(0,∞)

)
if q is even (and including 0

if p/q > 1), and (
xp/q

)′
=

p

q
xp/q−1

Proof: By the previous theorem, if q ∈ N we have d
dxx

1/q = 1
qx

1/q−1 = 1
qx

(1−q)/q

so by another application of (1) we have

(
xp/q

)′
= lim

h→0

(x+ h)p/q − xp/q

h

= lim
h→0

(
(x+ h)1/q

)p − (x1/q)p

h

= lim
h→0

(
(x+ h)1/q − x1/q

)((
(x+ h)1/q

)p−1
+ · · ·+ (x1/q)p−1

)
h

=

[
lim
h→0

(x+ h)1/q − x1/q

h

] [
lim
h→0

((
(x+ h)1/q

)p−1
+ · · ·+ (x1/q)p−1

)]
=

[
d

dx
x1/q

] [
(x1/q)p−1 + (x1/q)p−2x1/q + · · ·+ (x1/q)p−1

]
=

[
1

q
x(1−q)/q

] [
p(x1/q)p−1

]
=

p

q
x(1−q)/q+(p−1)/q

=
p

q
x(p−q)/q

=
p

q
xp/q−1

■

Theorem 13 (Chain Rule) If g ∈ D(A) and f ∈ D
(
g(A)

)
, then f ◦ g ∈ D(A)

and
(f ◦ g)′(x) = f ′(g(x))g′(x)

In Leibniz notation, and using z = f(y) and y = g(x), this becomes

dz

dx
=

dz

dy
· dy
dx

Proof: The intuitive idea is to use the differentiability of f at g(a) and multiply
and divide the difference quotient of (f ◦ g)(x) by g(x)− g(a),

f(g(x))− f(g(a))

x− a
·g(x)− g(a)

g(x)− g(a)
=

f(g(x))− f(g(a))

g(x)− g(a)
· g(x)− g(a)

x− a
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then take the limit as x → a. Of course, we know that wherever f and g are differen-
tiable, they are also continuous, so, by Theorem 29, Lecture 10, their composition is
also continuous. Hence, for any a ∈ A we have limx→a f(g(x)) = f(g(a)). Yet, it may
be the case that g(x) is constant on a neighborhood of a, so that f(g(x)) = f(g(a))
on that neighborhood. In this case, we have, for y ̸= g(a),

f ′(g(a)) = lim
y→g(a)

f(y)− f
(
g(a)

)
y − g(a)

but we cannot replace y with g(x) without dividing by 0. To prevent this, we define
a workaround function h(y),

h(y)
def
=


f(y)− f

(
g(a)

)
y − g(a)

, if y ̸= g(a)

f ′(g(a)), if y = g(a)

Then we can say that

h
(
g(x)

)
[g(x)− g(a)] = (f ◦ g)(x)− (f ◦ g)(a)

is continuous on a neighborhood of a even if g(x) = g(a) nearby, and moreover
limx→a h

(
g(x)

)
= f ′(g(x)). Then,

(f ◦ g)′(a) def
= lim

x→a

(f ◦ g)(x)− (f ◦ g)(a)
x− a

= lim
x→a

h
(
g(x)

)g(x)− g(a)

x− a

= f ′(g(a))g′(a)
■

Theorem 14 (Inverse Function Theorem) If f ∈ C([a, b])∩D((a, b)) is also
injective on [a, b], then

f−1 ∈ D
(
f
(
(a, b)

)
− f

(
(f ′)−1(0)

))
(that is f−1 is differentiable wherever f ′(c) ̸= 0). Letting y = f(c), in fact

(f−1)′(y) =
1

f ′
(
f−1(y)

)
When additionally f ∈ C1([a, b]), if ∃c ∈ (a, b) where f ′(c) ̸= 0, then ∃Vε(c) ⊆
(a, b) on which f ′(x) ̸= 0, and in that case f−1 ∈ D

(
Vε(c)

)
.
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Proof: (Exercise 5.2.12, Abbott) Since f ∈ C([a, b]) is injective, it is bijective
onto its range f([a, b]) = [m,M ], and therefore a homeomorphism and so either
strictly increasing or strictly decreasing on [a, b], according to Theorem 11, Lecture
11. Since f ′(c) ̸= 0, moreover, we have

(f−1)
′(
f(c)

)
= lim

x→c

f−1(f(x))− f−1(f(c))

f(x)− f(c)

= lim
x→c

x− c

f(x)− f(c)

= lim
x→c

1
f(x)−f(c)

x−c

=
1

f ′(c)

This simultaneously shows that f−1 is differentiable at f(c) and that its derivative
is 1/f ′(c). Finally, if f ∈ C1([a, b]), then f ′ ∈ C([a, b]), so that if f ′(c) ̸= 0 for
c ∈ (a, b) then there is some open neighborhood I of c on which f ′(x) ̸= 0, whence
the theorem holds for each x in this interval. ■
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2 Function Subspaces of D(A)

Example 15 Let A ⊆ R and consider the following vector subspaces of the space

D(A)
def
= {f : A → R | f is differentiable on A }

(1) The space of k-times continuously differentiable functions, those for
which all derivatives up to and including order k exist and are continuous,

Ck(A)
def
=
{
f : R → R

∣∣∣ f (j) ≡ djf

dxj
∈ C(A), for all 1 ≤ j ≤ k

}
We let C0(A)

def
= C(A) . Observe that by Theorem 6 Dk(A) ⊆ Ck−1(A) .

(2) Functions which have continuous derivatives of all orders are called smooth
functions or C∞-functions,

C∞(A)
def
=
{
f : R → R

∣∣∣ f (j) ≡ djf

dxj
∈ C(A) for all j ∈ N

}
=

∞⋂
k=0

Ck(A)

(3) Hence, we introduce the (real) analytic functions, at least in a neighborhood
of a point x = a,

Cω(A)
def
=
{
f ∈ C∞(R)

∣∣∣ f(x) = ∞∑
n=0

f (n)(a)

n!
(x− a)n, for all a ∈ R

}
(4) The most familiar functions which equal their own Taylor series are the poly-

nomials R[x]:

R[x] def
=
{
p(x) ∈ Cω(R)

∣∣∣ p(x) = n∑
k=0

akx
k, n ∈ N

}
In other words, polynomials are those analytic functions whose Taylor
series are finite! For example, p(x) = 2x2 − 3x + 1 satisfies p′(x) = 4x − 3
and p′′(x) = 4, with higher derivatives p(n)(x) = 0, so that, centering the Taylor
series at x = 0 we have

∞∑
n=0

p(n)(0)

n!
(x− 0)n = p(0) +

p′(0)

1!
x+

p′′(0)

2!
x2

= 1 +
−3

1
x+

4

2
x2

= 1− 3x+ 2x2

= p(x)
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We may also filter the set of polynomials into subclasses, namely polynomials
of degree at most n,

Rn[x]
def
= {p ∈ R[x] | deg(p) ≤ n}

It is an easy exercise to prove that for any p(x) =
∑n

k=0 akx
k all coefficients

satisfy ak = p(k)(0)/k!, so that Rn[x] ⊆ Cω(R). ■

Remark 16 The above examples can be arranged in an vector space inclusion
diagram (the hooked arrows denote inclusion):

R0 = R R1[x] · · · Rn[x] · · · R[x] Cω(R)

C∞(R) · · · Ck(R) · · · C2(R) C1(R) D(R)

C(R) RR

Exercise 17 Prove that R[x] ⊆ Cω(R), i.e. that all real polynomials are real ana-
lytic. This is most easily achieved by demonstrating that for any p(x) =

∑n
k=0 akx

k ∈
R[x], the coefficients satisfy ak = p(k)(0)

k! . ■

Exercise 18 Show that all Ck(A), as well as C∞(A) and Cω(A), are real vector
spaces, and in fact real associative algebras (they are closed under (pointwise)
scalar multiplication, sums and differences, and multiplication; even division whenever
the denominator is not 0). ■

Exercise 19 In the real case, the filtration above is strict, in the sense that there
are functions f ∈ Ck(R) which are not in Ck+1(R). Show that,

(1) f(x) = |x| lies in C(R) by not in C1(R).
(2) f(x) = x|x| lies in C1(R) but not in C2(R).
(3) f(x) = xk|x| lies in Ck(R) but not in Ck+1(R).

(4) f(x) =

{
e−1/x, if x > 0,

0, if x ≤ 0,
lies in C∞(R) but not in Cω(R). This example stands

in contrast to functions such as ex and sinx, which do equal their Taylor series
everywhere (and so lie in Cω(R); in fact, these functions are defined in terms of
their series).

(5) Certainly ex =
∑∞

n=0
1
n!x

n lies in Cω(R) but not in R[x]. ■
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Remark 20 The situation with complex differentiability is different, because by
Cauchy’s theorem a complex-differentiable function is automatically analytic, that
is DC(C) = Cω(C). ■

Example 21 The following are subspaces of C(A). We encourage the reader to
explore the functional analysis and partial differential equations literature on these:

(1) Schwartz functions

S(A)
def
= {f ∈ C∞(A) | ∥f∥α,β < ∞, α, β ∈ N0}

where ∥f∥α,β
def
= supx∈A |xαf (β)(x)|.

(2) Continuous, compactly supported functions on A, also called bump
functions or test functions in the context of distributions,

Cc(A)
def
=
{
f ∈ C(A) | supp(f) def

= {a ∈ A | f(a) ̸= 0} ∈ KA

}
(3) Functions vanishing at infinity

C0(A)
def
= {f ∈ C(A) | ∀ε > 0, ∃K ∈ KA, sup

x∈A−K
|f(x)| < ε}

(4) Bounded functions

B(A)
def
= {f : A → R | ∃M > 0, ∀a ∈ A, |f(a)| ≤ M}

(5) Riemann integrable functions

R(A)
def
=
{
f : A → R |

∫
A
f dx ∈ R

}
(Riemann integral)

(6) Lebesgue square-integrable functions

L2(A)
def
=
{
f : A → R |

(∫
A
|f |2 dµ

)1/2
∈ R

}
(Lebesgue integral)

(7) Sobolev spaces W k,p(A) and Hp(A), whose definition we leave to a specialized
course.

Good places to look at these spaces are Reed and Simon, Functional Analysis; Kadison
and Ringrose, Fundamentals of the Theory of Operator Algebras, Volume I: Elemen-
tary Theory ; Duistermaat and Kolk, Distributions: Theory and Applications; Leoni,
A First Course in Sobolev Spaces. The background required is a graduate real anal-
ysis course, e.g. Rudin’s Real and Complex Analysis. ■
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3 Mean Value Theorem and its Corollaries

Theorem 22 (Darboux/Fermat Theorem) Let A ⊆ R and let f ∈ D(A).
If a ∈ A◦ is a local extremum (min or max), then f ′(a) = 0.

Proof: If f(a) is a local max on some neighborhood Vδ(a) of a, this means f(x) ≤
f(a) for all x ∈ Vδ, and hence f(x) − f(a) ≤ 0 for such x. On the other hand,
x− a < 0 if a− δ < x < a and x− a > 0 if a < x < a+ δ. From this it follows that

L− def
= lim

x→a

f(x)− f(a)

x− a
≥ 0

L+ def
= lim

x→a

f(x)− f(a)

x− a
≤ 0

Since ′(a) = L+ = L− exists, we conclude that f ′(a) = L+ = L− = 0. The local
min case is proved similarly. ■

Theorem 23 (Rolle’s Theorem) Let f ∈ C([a, b])∩D
(
(a, b)

)
. If f(a) = f(b),

then ∃c ∈ (a, b) such that f ′(c) = 0.

Proof: If f is a constant function, then any c ∈ (a, b) will do. Otherwise, f must
have an interior extremum c ∈ (a, b) by EVT, at which f ′(c) = 0 by the previous
theorem. ■

Exercise 24 If f, g ∈ C([a, b]) ∩ D
(
(a, b)

)
, f(a) = g(a) and f(b) = g(b), then show

that ∃c ∈ (a, b) such that f ′(c) = g′(c). ■

Theorem 25 (General Mean Value Theorem) If f, g ∈ C([a, b])∩D
(
(a, b)

)
,

then ∃c ∈ (a, b) such that[
f(b)− f(a)

]
g′(c) =

[
g(b)− g(a)

]
f ′(c)

Proof: Let h(x) =
[
f(b)− f(a)

]
g(x)−

[
g(b)− g(a)

]
f(x). Then,

h(a) = f(b)g(a) +����f(a)g(a)− g(b)f(a) +����g(a)f(a)

= f(b)g(a)− g(b)f(a)

and

h(b) = ����f(b)g(b)− f(a)g(b)−����g(b)f(b) + g(a)f(b)

= −f(a)g(b) + g(a)f(b)

so that h(a) = h(b). By Rolle’s theorem, therefore, ∃c ∈ (a, b) such that

h′(c) = f ′(c)
[
g(b)− g(a)

]
− g′(c)

[
f(b)− f(a)

]
= 0

whence [f(b)− f(a)
]
g′(c) =

[
g(b)− g(a)

]
f ′(c). ■
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Corollary 26 (Mean Value Theorem) If f ∈ C([a, b])∩D
(
(a, b)

)
, then ∃c ∈

(a, b)
f(b)− f(a) = f ′(c)(b− a) (2)

Proof: Let g(x) = x in the General Mean Value Theorem. ■

Corollary 27 For any f ∈ C([a, b]) ∩ D
(
(a, b)

)
we have(

f ′(x) ≡ 0 on A ⇐⇒ f ≡ c is constant on the interval
)

Proof: If f ≡ c on A, then f ′ ≡ 0 on A by Theorem 8 above. If f ′ ≡ 0 on A, then by
MVT, ∀x, y ∈ (a, b), x < y =⇒ ∃ξ ∈ (x, y) such that f(x)− f(y) = f ′(ξ)(x− y) =
0(x − y) = 0, implying that f(x) = f(y). This is true for all x, y ∈ (a, b), so f is
constant on (a, b). Since f is continuous on [a, b], it must have the same value at a
and b as well. ■

Corollary 28 Let f ∈ D
(
(a, b)

)
.

(1) If f ′(x) ≥ 0 on (a, b), then f is increasing on (a, b).

(2) If f ′(x) ≤ 0 on (a, b), then f is decreasing on (a, b).

Moreover, if the inequalities are strict, then f is strictly increasing or strictly
decreasing, respectively.

Proof: Let x, y ∈ (a, b), with x < y. If f ′(x) ≥ 0 on (a, b), then by MVT applied
to f on [x, y], ∃ξ ∈ (x, y) with

f(y)− f(x) = f ′(ξ)(y − x) ≥ 0

Since x and y were arbitrarily chosen, we see that f is increasing on (a, b). Similarly,
if f ′(x) ≤ 0 on (a, b), we get

f(y)− f(x) = f ′(ξ)(y − x) ≤ 0

so f is decreasing on (a, b). If we replace the inequalities by strict inequalities,
moreover, we see that f will become strictly increasing or decreasing, respectively.■
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Remark 29 We have seen (Darboux/Fermat Theorem 22) that if c is a local interior
extremum of a function f ∈ D(A), then f ′(c) = 0. The converse, however, does not
generally hold. Even if f ′(c) = 0, it is not generally true that c is a local extremum.
For example, if f(x) = x3, then f ′(x) = 3x2, so f ′(0) = 0, yet x = 0 is not an
extremum.

x

y
x3

a = 0

What, in addition to f ′(x) = 0, do we need to determine whether x is a maximimum
or a minimum of f? This is precisely what the first and second derivative tests tell
us. ■

Definition 30 Let f ∈ D(A). Any zero of f ′, that is any a ∈ A for which f ′(a) = 0,
is called a critical point or critical number of f . The set of all critical points is
the preimage of 0 under f ′,

(f ′)−1(0)
def
= all critical points of f

The question is whether a given critical point a is

(1) a local maximum (∃ε > 0, ∀x ∈ Vε(a), f(x) ≤ f(a))

(2) a local minimum (∃ε > 0, ∀x ∈ Vε(a), f(x) ≥ f(a))

(3) a saddle point (f(x) ≤ f(a) and f(x) ≥ f(a) on Vε(a), the switch happening
about a).

In order to determine this, we must test a given critical point. ■

Corollary 31 (First Derivative Test) Let f ∈ D(A) and let a ∈ (f ′)−1(0)
be a critical point of f . Suppose further that a ∈ A◦ and ∃ε for which Vε(a) ⊆ A.

(1) If f ′(x) > 0 on (a − ϵ, a) ⊆ Vε(a) and f ′(x) < 0 on (a, a + ε) ⊆ Vε(a),
then a is a local maximum of f .

(2) If f ′(x) < 0 on (a − ε, a) and f ′(x) > 0 on (a, a + ε), then a is a local
minimum of f .

(3) If f ′(x) > 0 on Vε(a)−{a} or f ′(x) < 0 on Vε(a)−{a}, then a is a saddle
point of f .
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Proof: This follows from Corollary 28. If the first condition holds, then f is in-
creasing on (a− ε, a) and decreasing on (a, a+ ε). Hence for any x ∈ Vε(a)− {a}
we must have f(x) < f(a), so that a is a local max. Similarly a is a local min in the
second case. The third case shows that either f is increasing on all of Vε(a)−{a} if
f ′(x) > 0 or decreasing on all of Vε(a)− {a} if f ′(x) < 0, and hence reaches values
both above and below f(a). ■

Corollary 32 (Second Derivative Test) Let f ∈ D2(A) and consider an in-
terior critical point a ∈ A◦ ∩ (f ′)−1(0).

(1) If f ′′(a) > 0, then a is a local minimum of f .

(2) If f ′′(a) < 0, then a is a local maximum of f .

(3) If f ′′(a) = 0, then no conclusion can be drawn, amay be a local minimum
or a local maximum or a saddle point.

Proof: Apply Corollary 28 to f ′. If f ′′ > 0 on Vε(a), then f ′ is increasing on Vε(a).
Since f ′(a) = 0, we must have f ′ < 0 on (a− ε, a) and f ′ > 0 on (a, a+ ε), so f has
a local minimum by the First Derivative Test, Corollary 31. We sometimes say f is
“concave up,” meaning the (horizontal) tangent line at a is below the graph of f ,

L(x) = f(a) +

= 0︷ ︸︸ ︷
f ′(a)(x− a) =

a is a local min︷ ︸︸ ︷
f(a) ≤ f(x)︸ ︷︷ ︸

L(x) ≤ f(x)

If f ′′ < 0 on Vε(a), then f ′ is decreasing on Vε(a). Since f ′(a) = 0, we must have
f ′ > 0 on (a− ε, a) and f ′ < 0 on (a, a+ ε), so f has a local maximum by the First
Derivative Test, Corollary 31. We sometimes say f is “concave down,” meaning the
tangent line at a is above the graph of f ,

L(x) = f(a) +

= 0︷ ︸︸ ︷
f ′(a)(x− a) =

a is a local max︷ ︸︸ ︷
f(a) ≥ f(x)︸ ︷︷ ︸

L(x) ≥ f(x)

Otherwise, if f ′′(a) = 0, we cannot say which is the case. ■
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