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1 Definition of Differentiability and its Basic Properties

Definition 1 Let A C R and let f: A — R. We say that f is differentiable at a
point a € A if the functional limit
T f(fL’) _ f((l) d:ef f/(a)

r—a r—a

exists in R (in which case it is called the derivative of f at a), that is,

f(z) — f(a)

r—a

— f'(a)

<)

By a change-of-variable, letting A def a, so that x = a+ h, we can write this limit
in its other familiar form

Ve >0, 36 > 0, <O<\x—a\<5 — ’

i L0 (@) g s

h—0 h

Expanded into its definitional e-d terms, this says

‘f(a+ h) — f(a)
h

— f'(a)

<)

We say f is differentiable on A if it is differentiable at every point in A. The set
of all differentiable functions on A is denoted

Ve >0, 36 > 0, <0<|h|<5 —

D(A) 4 all differentiable functions fon A n




Remark 2 The derivative f'(a) € R, when it exists, is interpreted as the instant
rate of change of y with respect to x, or as slope of the tangent line to the graph of
f at (a, f(a)). Let us take this latter interpretation and find the equation of the
tangent line to graph f at (a, f(a)).

(1) Use point-slope form with P = (a, f(a)) and m = f’(a) to get an equation of
the tangent line:

y—fla)=f(a)(z—a) = |y=f(a)+[f(a)(x—a)

equation of tangent line, L(x)

which some of you may remember from calculus as the linear approximation
to f or local linearization of f near a € A, or, again, as the first Taylor
polynomial of f at a € A:

fwy L(a)
(a. f(a))
o/ a @
/
I

L) = f(a)+ f'(a)(z—a)

(2) Use the definition of f'(a) as a functional limit to clarify the idea of approxi-
mation: Ve > 0, 35 > 0 such that 0 < |z — a| < ¢ implies

w <e == —6<M_f/(a)<5

- 1) o
= @m0 < f@) - (@) + @ - a) <c (- a)

-~

= L(z)

which shows that, if we take § <1 just as a precaution, we have Yz € Vs(a)

| 1/(2) - L(x)| <elz—a| <e-0<e |

so that indeed near r = a




Notation 3 The derivative of f at a € A is variously denoted as

(Lagrange)  f'(a)
. df d(f(a)) df
(Leibniz) %(a) or I or —|
(Euler) Df(a)
(Newton) f(a)
Each has its virtues. We encounter f'(a) and df /dx in calculus books, Df(a) is
multivariate analysis, and f(a) in classical physics texts. |

Definition 4 If A C Rand f € D(A), we have a whole new function, the derivative
function,

ffiA—=R
f’(a) d:ef aljllg f(wl).:i(a)

If f' € D(A), then we have the second derivative function,

A= R

" def / ory/ def . f/(x) - f/(a)

f ey 1 D
(@) (Y (@ i S
Proceeding inductively, we may define the nth derivative function by
AR
(n—1) _ £(n—1)

f(n) (a> d:ef (f(n—l))/(a) d:ef lim f (.%') f (a)

r—a Tr—a

Let us denote the set of all k-times differentiable functions on A by

Dk(4) &

{f:A=R|IfOD: AR, forall 0<i<k} [




Lemma 5 lim f(z) = f(a) <= lim(f(z)— f(a)) =0.

rT—a r—a

Proof: Suppose li_r)n f(z) = f(a), and observe that lim f(a) = f(a) since f(a) is a
x a r—a

constant. Using the difference (functional) limit law we have

lim (f(z) = f(a)) = (lim(f(2)) = (lim f(a))

= fla) = f(a)
= 0

r—a

Conversely, if li_r>n (f(x) — f(a)) = 0, then, since lim f(a) = f(a), the sum (func-

tional) limit law gives

lim f(z) = lim (f(z) — f(a) + f(a))
= lim[(f

(x) ~ f(a)) + f(a)]
= 0+ f(a)
= (o)

Theorem 6 Differentiable functions are continuous, D(A) C C(A).

Proof: f € D(A) means Va € A the limit

def

i @) = f(a)

T—a Tr—a

f'(a)

exists in R. Therefore, to show that lim,_,, f(x) = f(a), we use this definition, the
fact that all polynomials are continuous on R (Corollary 26, Lecture 10), and the
product limit law to conclude

r—a

lim (f(2) = f(a)) = lim(f(z) = f(a))

T—a r—ra xr—a

- (L2200 o)

Tr—a T —a
= fa)-0
=0
The lemma then ensures lim f(z) = f(a). |

Tr—ra

Remark 7 This is only a set inclusion, so far. Let us show that D(A) is in fact a
vector subspace of C(A). Indeed, it is a real associative subalgebra of C(A). |



Theorem 8 (Generic Rules of Differentiation) If f,g € D(A) and ¢ € R,
then ¢ (the constant function), cf, f g, fg and f/g € D(A) (the last wherever
g # 0). Moreover, Ya € A we have

(1) ¢=0 (constant function rule)
(2) (ef)(a) =cf'(a) (scalar multiple rule)
(3) (f£g)(a)=f(a) g (a) (sum /difference rules)
(4) (fg9)'(z0) = f(a)g'(a) + f'(a)g(a)  (product rule)

> (@) = f'(a)g(a) = f(a)g'(a)

quotient rule
9%(a) ( )

o

Q |

Proof: Note that we can prove all of them by the combo of definition of differen-
tiability + functional limit laws:
(1) Viewing c as the range of a function f: A — R, f(x) ef ¢, we have

. —C .
¢ = lim =1lim0=0
r—a l — Q r—ra

(2) Since (cf)(z) L. f(z), we have

T—a T —a T—a T —a

= cf(a)

(3) Likewise (f £ g)(z) ef f(z) £ g(x), so

(FEg)(a) = timSEI@=(+9)@)

T—a Tr—a

= lim f(l’)—f(a)ig(x)—g(a)

T—ra r—a xr—a

= fa)+4'(a)

def

(4) Since (fg)(z) = f(x)g(x), we have
iy S9)(@) — (F9)(a)

T—a r —Qa

_ i L ®)9(@) — f@)g(a) + f(x)g(a) — fla)g(a)

T—a Tr—a

[ B0 e @) = @)

= f(a)g'(a) + f'(a)g(a)
(f(z) — f(a) because f € D(A) C C(A))

(f9)'(a)




(5) Finally, since (%)(x) 1 J@) e have

A O R (O[O
(§> (a) = lim = lim

(9(x) — g(a) because g € D(A) C C(A)). [ ]

Remark 9 We could also prove (2) and (3) directly from the definition of f'(a) as a
functional limit: Choose a € A and € > 0. Since f € D(A), 36 > 0 so that

0<|z—al<d = f(x)_f(a)—f’(a)’<€
r—a |c]
and therefore
Cf(l:;:fbf(a) —cf/(a) — ’C|’f(12‘:£(a) _f/(a)
€
<l - H

=&

Similarly, if f,g € D(A), then Ya € A, Ve > 0, 301,92 > 0 such that

ﬂ?:f@—fwﬂ<§
0<|r—al<d o min{dy, de} = and
o) =5(0) _ ] €
so by a triangle inequality we have
| (L) ) s ()00
L S RN CCE I P,

6



The others could also be proven directly, I suppose, but the complications multiply
with the product and quotient rules. We leave these as exercises! |

Theorem 10 (Power Rule; Polynomials are Differentiable on R)
For all n € N, the monomial ™ € Rlz]| is differentiable everywhere, 2™ € D(R),
and

n—1

(z™) = nx

As a result, all polynomials are differentiable everywhere,
R[z] € D(R) C C(R)

and the derivative operator % restricts to a linear map on R[z]:

n ! n
<§ akxk> = g kakaﬁkfl
k=0 k=1

Proof: Let us use the algebraic identity
" — g = (J? _ a)(xn—l +xn—2a+ . +xan—2 _|_an—1)

We have, Va € R,

n n

n
T
N [ A S )
T—ra _.T/‘/d
= lim(z" ' +2" a4 - +a")
r—a
= na"!

Since this is true for all a € R, we conclude that the derivative function is given by
(z™)" = na"~!. The action of % on D(R) is linear by (2)-(3) of the previous theorem,
while the action on monomials produces other monomials, so d% restricts to a linear
operator on R[z], because polynomials are linear combinations of monomials. |

We can enlarge this power rule to all rational powers p/q, in two steps, using the
same algebraic identity as in the proof above:



Theorem 11 (gth Root Power Rule) For all odd ¢ € N we have z'/9 €
D(R) and z~/7 € D(R—{0}), while for all even q € N we have z'/9 € D([0,00))
and =19 ¢ D((0,00)), and their derivative functions are given by

1
/¢y _ = ,.(1/g9)—1
(@) = 1z
1
—1/q\' _ _ = —(1/q)—1
(71 =2

Proof: Recall that for all real numbers a and b and all p € N we have
a? — b9 =(a—b)(a? +a" b+ Fab?*+pit) (1)
(just foil out the right hand side). With a = (z 4+ 2)'/? and b = 2'/9, we get
q qg—1 q—2 o
(119 gy G (G W) (BT )
h—0 h ((z + h)l/q)q*1 + ((z+ h)l/q)q72xl/q T I

= lim ((x + h)l/q)q — (xl/Q)q
=0 Bl ((x 4+ h)V/a) "™ 4 (@ + B)Ya) T 0l o (a1 a)1a]

J
= lim
h—0 %[((aj—l— h)l/q)q—l 4 ((x + h)l/q)q_le/q 4ot (xl/q)l_q]
_ 1
= @@
_ Lo
q

which proves the first result. For the second, we have, again by (1),

(x—l/q)’ — lim (z+h)~Va— gt/

h—0 h
1 1
— lim (z+h)T7a — zi/a
h—0 h

z'/9—(z4h)1/1

- iy EHWVeel (xV/9)a=1 4 (21 /0)9=2(z 4 B9 4 o 4 (2 + h)l/q)‘1_1

h—0 h (@1/a)a=1 4 (z1/9)0=2(z + B/ 4 .- + ((w + h)H/a) T
= lim v (z+h)

A0 h(a o h)Yaxt/a (/)11 4 (/a2 4 h) Yt (@ b))
_ —/

Ji(x + h)Vaxl/a [(;cl/q)q—l + (xV/0)a=2(x + h)Y/a + - + ((x + h)l/q)q_l]

1
T grt/aglaD/a
1
gzt (/a)




Theorem 12 (Rational Power Rule) If p,q € Z, with ¢ > 0, then we have
2P/1 € D(R — {0}) if q is odd, or zP/? € D((0,00)) if q is even (and including 0
ifp/q > 1), and
(mp/q)’ _ Bxp/q—l
q

Proof: By the previous theorem, if ¢ € N we have %ml/q = %xl/qﬂ = %x(l’q)/q
so by another application of (1) we have

T+ h)p/q _ gp/a

(:z:p/q)/ = lim (

h—0 h

T (G O Ml G0

h—0 h

) (& + b)Y/ — 21/9) (((m ) L (ml/q)pfl)
= l1im

h—0
= | lim (m+h)1}/Lq _xl/q} |:I£ii%(((x+h)1/q)l71 +.._+($1/q)p_1)}

d

= dxxl/q} {(xl/q)pl + (xl/q)pfle/q NI (xl/q)pl]

1
= qx(liﬁ/fI] [p(xl/q)pl]

_ P(-a)/e¢+(p-1)/q

Theorem 13 (Chain Rule) If g € D(A) and f € D(g(A)), then fog € D(A)
and
(fog)(x) = f'(9(2))d (x)
In Leibniz notation, and using z = f(y) and y = g(x), this becomes
i _dz dy
dr dy dx

Proof: The intuitive idea is to use the differentiability of f at g(a) and multiply
and divide the difference quotient of (f o g)(z) by g(z) — g(a),

flg(x)) — fg(a)) g(x) —g(a) _ flg(x)) — flg(a)) g(x) —g(a)
T—a 9(x) —g(a) 9(x) —g(a) z—a




then take the limit as z — a. Of course, we know that wherever f and g are differen-
tiable, they are also continuous, so, by Theorem 29, Lecture 10, their composition is
also continuous. Hence, for any a € A we have lim,_,, f(g(x)) = f(g(a)). Yet, it may
be the case that g(x) is constant on a neighborhood of a, so that f(g(z)) = f(g(a))
on that neighborhood. In this case, we have, for y # g(a),

Plot@) =t [0 ZI000)

but we cannot replace y with g(x) without dividing by 0. To prevent this, we define
a workaround function h(y),

fw) = f(g(a)) .
h(y) def y—gla) if y # g(a)
[ (9(a)), if y = g(a)

Then we can say that
h(9(x))[9(x) — g(a)] = (f ° g)(z) — (f 0 g)(a)

is continuous on a neighborhood of a even if g(x) = g(a) nearby, and moreover
limgq h(g(z)) = f'(9(x)). Then,

def

(Fog)(a) & pim Y29@=(fog)(@)

T—ra r—a

T—a Tr—a

= f'(9(a))g'(a)

Theorem 14 (Inverse Function Theorem) If f € C([a,b])ND((a,b)) is also
injective on [a, b], then

F e D(f((ab) - F((1) 7))

(that is f~! is differentiable wherever f'(c) # 0). Letting y = f(c), in fact

1

—1y/ .
(f)(y) = W)

When additionally f € C'([a,b]), if 3¢ € (a,b) where f'(c) # 0, then IV.(c) C
(a,b) on which f'(z) # 0, and in that case f~* € D(Vz(c)).

10




Proof: (Exercise 5.2.12, Abbott) Since f € C([a,b]) is injective, it is bijective
onto its range f([a,b]) = [m, M], and therefore a homeomorphism and so either
strictly increasing or strictly decreasing on [a, b], according to Theorem 11, Lecture
11. Since f’(c) # 0, moreover, we have

(FH'(fl0)) = lim

a—e f(z) = fle)
— lim _r—-c
z—e f(x) — f(c)
1
= lm DEI0
o
o)

This simultaneously shows that f~! is differentiable at f(c) and that its derivative
is 1/f'(c). Finally, if f € C'([a,b]), then f' € C([a,b]), so that if f'(c) # 0 for
¢ € (a,b) then there is some open neighborhood I of ¢ on which f/(x) # 0, whence
the theorem holds for each z in this interval. |

11



2 Function Subspaces of D(A)

Example 15 Let A C R and consider the following vector subspaces of the space

D(A) def {f:A—R| f is differentiable on A }

(1) The space of k-times continuously differentiable functions, those for
which all derivatives up to and including order k exist and are continuous,
& f

C"’(A)dzef{f:R%R‘f(j)zweC(A), fora111§jgk}

def

We let | CO(A) C(A)| Observe that by Theorem 6| D¥(A) C C*~1(A) |

(2) Functions which have continuous derivatives of all orders are called smooth
functions or C'*°-functions,

) J
c°(4) & {f:R%R‘f(J)E%EC(A) foralljeN}

- Nt
k=0

(3) Hence, we introduce the (real) analytic functions, at least in a neighborhood
of a point = a,

(n)
! n‘(a) (x —a)", forall a € R}

co) ¥ {fec>®) | f(z) = >
n=0

(4) The most familiar functions which equal their own Taylor series are the poly-
nomials R[z]:

Rz] def {p(l‘) € C*(R) ‘ p(x) = iakmk, n e N}
k=

In other words, polynomials are those analytic functions whose Taylor
series are finite! For example, p(z) = 222 — 3z + 1 satisfies p'(z) = 42 — 3
and p”(x) = 4, with higher derivatives p(™ (z) = 0, so that, centering the Taylor
series at © = 0 we have

© (n) / 7
p (0) n o __ p (0> p (O) 2
;} = (x—=0)" = p(0)+ TN TR
— 4
= 1+ Tsx + §CL‘2
= 1-3z+22°
= p(z)

12



We may also filter the set of polynomials into subclasses, namely polynomials
of degree at most n,

Rafz] & {p e R[z]| deg(p) < n}

It is an easy exercise to prove that for any p(z) = > ;. apr® all coefficients
satisfy aj, = p*)(0)/k!, so that R,[z] € C*(R). [

Remark 16 The above examples can be arranged in an vector space inclusion
diagram (the hooked arrows denote inclusion):

Ro=R < Ry[z] R,[z] R[z] C“(R) 7

Eﬁ C>®(R) C*(R) C?*(R) — CY{R) —— D(R) 7

L CR) — RR

Exercise 17 Prove that R[x] C C*(R), i.e. that all real polynomials are real ana-
Iytic. This is most easily achieved by demonstrating that for any p(x) = Y p_, axz”® €

. . (k)
R[z], the coefficients satisfy aj, = 2 k!(o)' [ |

Exercise 18 Show that all C¥(A), as well as C*°(A) and C¥(A), are real vector
spaces, and in fact real associative algebras (they are closed under (pointwise)
scalar multiplication, sums and differences, and multiplication; even division whenever
the denominator is not 0). [ |

Exercise 19 In the real case, the filtration above is strict, in the sense that there
are functions f € C*(R) which are not in C**1(R). Show that,

(1) f(x) = |z| lies in C(R) by not in C*(R).
(2) f(x) = x|z| lies in C*(R) but not in C*(R).
(3) f(z) = 2*|z| lies in C*(R) but not in Ck*1(R).
Ve ife >0
(4) f(z) = o 1 T2 liesin C*°(R) but not in C¥(R). This example stands
0, if x <0,
in contrast to functions such as e and sin x, which do equal their Taylor series
everywhere (and so lie in C*(R); in fact, these functions are defined in terms of
their series).

(5) Certainly e® = 3> | La™ lies in C*(R) but not in R[z]. [ ]

n=0 n!

13



Remark 20 The situation with complex differentiability is different, because by
Cauchy’s theorem a complex-differentiable function is automatically analytic, that
is Dc(C) = C¥(C). [ |

Example 21 The following are subspaces of C(A). We encourage the reader to
explore the functional analysis and partial differential equations literature on these:

(1) Schwartz functions

S(A) L fe =)

a,g <00, o, f € Ng}

def
where || flla,s = sup,eq 22 ().

(2) Continuous, compactly supported functions on A, also called bump
functions or test functions in the context of distributions,

def

Ce(4) € € C(A) | supp(f) T{a € AT f(a) £ 0} € Ka |

(3) Functions vanishing at infinity

Co(A) & {f e C(A)|Ve>0, IK € Ka, sup |f(z)] < e}
reA—-K

(4) Bounded functions

BA) Y (f:A-R|IM >0, Vac A, |fla)] <M}

(5) Riemann integrable functions

def

R(A) = {f A= R /Af dz € R} (Riemann integral)

(6) Lebesgue square-integrable functions

1/2
L*(A) aof {f A - R (/ | f]? d,u,> / € R} (Lebesgue integral)
A

(7) Sobolev spaces W*P(A) and HP(A), whose definition we leave to a specialized
course.

Good places to look at these spaces are Reed and Simon, Functional Analysis; Kadison
and Ringrose, Fundamentals of the Theory of Operator Algebras, Volume I: Elemen-
tary Theory; Duistermaat and Kolk, Distributions: Theory and Applications; Leoni,
A First Course in Sobolev Spaces. The background required is a graduate real anal-
ysis course, e.g. Rudin’s Real and Complex Analysis. |

14



3 Mean Value Theorem and its Corollaries

Theorem 22 (Darboux/Fermat Theorem) Let A C R and let f € D(A).
If a € A° is a local extremum (min or max), then f’(a) = 0.

Proof: If f(a) is a local max on some neighborhood Vj(a) of a, this means f(z) <
f(a) for all € Vs, and hence f(x) — f(a) < 0 for such . On the other hand,
r—a<0ifa—d<zr<aandz—a>0if a <z <a+J. From this it follows that

L~ def lim M >0
r—a Tr—a

e a0 T = J@)
r—a Tr—a

Since '(a) = Lt = L~ exists, we conclude that f'(a) = LT = L~ = 0. The local
min case is proved similarly. ]

Theorem 23 (Rolle’s Theorem) Let f € C([a,b]))ND((a,b)). If f(a) = f(b),
then Jc € (a,b) such that f'(c) = 0.

Proof: If f is a constant function, then any ¢ € (a,b) will do. Otherwise, f must
have an interior extremum ¢ € (a,b) by EVT, at which f/(c) = 0 by the previous
theorem. m

Exercise 24 If f,g € C([a,b]) N D((a,b)), f(a) = g(a) and f(b) = g(b), then show
that 3c € (a,b) such that f'(c) = ¢'(c). [ ]

Theorem 25 (General Mean Value Theorem) If f,g € C([a,b])ND((a,b)),
then 3¢ € (a,b) such that

Proof: Let h(z) = [f(b) — f(a)]g(z) — [g(b) — g(a)] f(x). Then,

ha) = [f(b)g(a) + fleygta)] — g(b) f(a) + alaf{a)
= f(b)g(a) - g(b)f(a)

and

hb) = fbygth) — f(a)g(b) — albHf1B) + g(a) f(b)
= —f(a)g(d) +g(a)f(b)

so that h(a) = h(b). By Rolle’s theorem, therefore, 3¢ € (a, b) such that

K (e) = f'(e)[9(b) — g(a)] — g'(c) [f(b) — f(a)] =0



Corollary 26 (Mean Value Theorem) If f € C([a,b])ND((a,b)), then 3c €
(a,0)
f(b) = f(a) = f(c)(b—a) (2)

Proof: Let g(z) = x in the General Mean Value Theorem. [ ]

Corollary 27 For any f € C([a,b]) N D((a,b)) we have

(f'(:r) =0on A <= f=cisconstant on the interva])

Proof: If f = con A, then f' = 0 on A by Theorem 8 above. If f' = 0 on A, then by
MVT7 Vm,y € (a?b)v <y = Elg € (Iay) such that f(fE) - f(y) = f/(g)(l‘ - y) =
O0(x — y) = 0, implying that f(x) = f(y). This is true for all z,y € (a,b), so f is
constant on (a,b). Since f is continuous on [a, b], it must have the same value at a
and b as well. |

Corollary 28 Let f € D((a,b)).

(1) If f'(x) > 0 on (a,b), then f is increasing on (a,b).
(2) If f'(x) <0 on (a,b), then f is decreasing on (a,b).

Moreover, if the inequalities are strict, then f is strictly increasing or strictly
decreasing, respectively.

Proof: Let z,y € (a,b), with z < y. If f'(x) > 0 on (a,b), then by MVT applied
to f on [x,y], I € (z,y) with

fy) = f@) = y—-=2)=0

Since z and y were arbitrarily chosen, we see that f is increasing on (a, b). Similarly,
if f'(z) <0 on (a,b), we get

fly) = fle)=FEy—-x)<0

so f is decreasing on (a,b). If we replace the inequalities by strict inequalities,
moreover, we see that f will become strictly increasing or decreasing, respectively. B

16




Remark 29 We have seen (Darboux/Fermat Theorem 22) that if ¢ is a local interior
extremum of a function f € D(A), then f'(¢) = 0. The converse, however, does not
generally hold. Even if f'(¢) = 0, it is not generally true that c is a local extremum.
For example, if f(z) = a3, then f'(x) = 322, so f'(0) = 0, yet + = 0 is not an
extremuin.

What, in addition to f’(x) = 0, do we need to determine whether = is a maximimum
or a minimum of f? This is precisely what the first and second derivative tests tell
us. |

Definition 30 Let f € D(A). Any zero of f', that is any a € A for which f/'(a) =0,
is called a critical point or critical number of f. The set of all critical points is
the preimage of 0 under f,

4f A1l critical points of f

(f)7(0)

The question is whether a given critical point a is
(1) alocal maximum (3 > 0, Vz € V.(a), f(x) < f(a))
(2) alocal minimum (3¢ > 0, Vo € V.(a), f(z)> f(a))
(3) a saddle point (f(z) < f(a) and f(x) > f(a) on V(a), the switch happening

about a).

In order to determine this, we must test a given critical point. |

Corollary 31 (First Derivative Test) Let f € D(A) and let a € (f')~1(0)
be a critical point of f. Suppose further that a € A° and 3e for which V;(a) C A.

(1) If f'(z) > 0 on (a—¢€, a) € Vz(a) and f'(x) < 0 on (a, a +¢) C V:(a),
then a is a local maximum of f.

(2) If f'(x) <0 on (a—e, a) and f'(x) > 0 on (a, a+ ¢), then a is a local
minimum of f.

(3) If f'(x) > 0 on Vz(a) — {a} or f'(x) < 0 on V.(a) — {a}, then a is a saddle
point of f.
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Proof: This follows from Corollary 28. If the first condition holds, then f is in-
creasing on (a — ¢, a) and decreasing on (a, a + ¢). Hence for any = € V.(a) — {a}
we must have f(z) < f(a), so that a is a local max. Similarly a is a local min in the
second case. The third case shows that either f is increasing on all of V;(a) — {a} if
f'(z) > 0 or decreasing on all of V.(a) — {a} if f’(x) < 0, and hence reaches values
both above and below f(a). |

Corollary 32 (Second Derivative Test) Let f € D?(A) and consider an in-
terior critical point a € A° N (f')~1(0).

(1) If f"(a) > 0, then a is a local minimum of f.

(2) If f"(a) < 0, then a is a local maximum of f.

(3) If f"(a) = 0, then no conclusion can be drawn, a may be a local minimum
or a local maximum or a saddle point.

Proof: Apply Corollary 28 to f’. If f” > 0 on V.(a), then f’ is increasing on V. (a).
Since f’(a) = 0, we must have f/ <0on (a—¢, a) and f' > 0on (a, a+¢), so f has
a local minimum by the First Derivative Test, Corollary 31. We sometimes say f is
“concave up,” meaning the (horizontal) tangent line at a is below the graph of f,

=0 a is a local min
L(z) = f(a) + f'(a)(x — a) = f(a) < f(x)
L(z) < f(2)

If f/ <0 on V.(a), then f’ is decreasing on V(a). Since f’(a) = 0, we must have
f'>0o0n (a—e¢,a)and f/ <0on (a, a+e¢), so f has a local maximum by the First
Derivative Test, Corollary 31. We sometimes say f is “concave down,” meaning the
tangent line at a is above the graph of f,

=0 a is a local max
L(z) = f(a) + f'(a)(z — a) = f(a) > f(x)
L(z) > f(»)
Otherwise, if f(a) = 0, we cannot say which is the case. [ |
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