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1 Continuous Functions on Compact Subsets of R

1.1 Preservation of Compactness and Extreme Value Theorem (EVT)

Theorem 1 (Continuous Functions Preserve Compactness) If K ∈ KR
and f ∈ C(R), then f(K) ∈ KR.

Proof 1 (via sequential compactness): (Theorem 4.4.1, Abbott) Let K ∈
KR = Ks

R and f ∈ C(R), and let us show that f(K) ∈ KR = Ks
R by showing that

every sequence (yn)n∈N in f(K) has a convergent subsequence with limit in f(K).
Since each yn ∈ f(K), ∃xn ∈ K for which yn = f(xn). Since K is (sequentially)
compact, the sequence (xn)n∈N in K has a convergent subsequence (xnk

)k∈N with
xnk

→ x ∈ K. By the Convergence Criterion (Theorem 23, Lecture 10), we have
ynk

= f(xnk
) → f(x) ∈ f(K), because x ∈ K. ■

Proof 2 (via compactness): Let K ∈ KR and f ∈ C(R), and let us show that
f(K) ∈ KR by showing that every open cover U = {Ui | i ∈ I} of f(K) (f(K) ⊆⋃

i∈I Ui) has a finite subcover. Since f ∈ C(R), Theorem 27, Lecture 10, says each

f−1(Ui) ∈ TR, so f−1(U) def
= {f−1(Ui) | i ∈ I} is an open cover of K (apply f−1

to both sides of f(K) ⊆
⋃

i∈I Ui, then K ⊆
⋃

i∈I f
−1(Ui)). But K is compact,

so f−1(U) has a finite subcover f−1(V) def
= {f−1(U1), . . . , f

−1(Un)} still covering

K ⊆
⋃n

i=1 f
−1(Ui). Consequently, V def

= {U1, . . . , Un} is a finite subcover of f(K)
(just apply f to both sides of K ⊆

⋃n
i=1 f

−1(Ui)). ■
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Theorem 2 (Extreme Value Theorem (EVT)) If ∅ ̸= K ∈ KR and f ∈
C(R), then ∃a, b ∈ K such that

f(a) = min f(K) ≡ min
x∈K

f(x)

f(b) = max f(K) ≡ max
x∈K

f(x)

that is, f attains or hits its minimum and maximum y-values on K.

Proof: If K ∈ KR and f ∈ C(R), then f(K) ∈ KR by the previous theorem, so
since KR = Kcb

R (by Heine-Borel, Theorem 16, Lecture 08), we know that f(K) is

closed and bounded. Since f(K) is nonempty (because K is), ∃m def
= inf f(K) and

∃M def
= sup f(K) by AoC. But these are in the closure f(K) = f(K) (since f(K) ∈

CR, Exercises 40-41, Lecture 07), so m,M ∈ f(K), meaning ∃a, b ∈ K for which
f(a) = m = min f(K) and f(b) = M = max f(K) (since m = inf f(K) = min f(K)
and M = sup f(K) = max f(K) because m,M ∈ f(K) (Proposition 22, Lecture
02)). ■

1.2 Compactness and Uniform Continuity

Example 3 Consider f(x) = x2. By Corollary 26, Lecture 10, f ∈ C(R). However,
the continuity is not uniform, in the sense that, though ∀a ∈ R, ∀ε > 0, ∃δ > 0
satisfying

(
|x − a| < δ =⇒ |f(x) − f(a)| < ε

)
, the δ depends on both ε and x. To

see this, recall that
|x2 − a2| = |x− a||x+ a|

and we need to bound |x+ a|. From δ ≤ 1 we derive

|x− a| ≤ 1 ⇐⇒ −|a| − 1 ≤ a− 1 < x < a+ 1 ≤ |a|+ 1

⇐⇒ −2|a| − 1 ≤ 2a− 1 < x+ a < 2a+ 1 ≤ 2|a|+ 1

⇐⇒ |x+ a| < 2|a|+ 1

(or alternatively, |x + a| ≤ |x| + |a| ≤ (|a| + 1) + |a| = 2|a| + 1, using only the first
equivalence). Then we can say that

∀a ∈ R, ∀ε > 0, ∃δ def
= min

{
1,

ε

2|a|+ 1

}
> 0,|x− a| < δ =⇒



|x2 − a| = |x− a||x+ a|
< δ · (2|a|+ 1)

≤ ε

2|a|+ 1
· (2|a|+ 1)

= ε




The key observation: δ = δ(ε, a)! Larger a require smaller δ, so that no single delta
works for all a ∈ R. Any δ will not be uniformly applicable on R. ■
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Definition 4 Let A ⊆ R. A function f : A → R is said to be uniformly continuous
on A if

∀ε > 0, ∃δ > 0, ∀x, y ∈ A,
(
|x− y| < δ =⇒ |f(x)− f(y)| < ε

)
Let us denote the set of all uniformly continuous functions on A by

Cu(A)
def
= all uniformly continuous functions on A

Note that this is not the case for f(x) = x2 on A = R, because for a fixed δ > 0, the
difference |x2 − y2| = |x− y||x+ y| will be bigger for large x, y satysfying |x− y| < δ
than for small x, y (since |x+ y| can be made large while keeping |x− y| < δ).

Theorem 5 (Compactness and Uniform Continuity) If K ∈ KR and
f ∈ C(K), then f ∈ Cu(K).

Proof: Let ε > 0 and use the continuity of f to find, for each x ∈ K, a δx > 0 such

that |x − y| < δx =⇒ |f(x) − f(y)| < ε/2. Now, U def
= {V δx

2
(x) | x ∈ K} covers

K, but since K is compact, U has a finite subcover V = {V δx1
2

(x1), . . . , V δxn
2

(xn)}.

Letting δ
def
= min{ δx1

2 , . . . ,
δxn

2 } we have for each x ∈ K ⊆
⋃n

i=1 V δxi
2

(xi) that

x ∈ V δxi
2

(xi) for one of the i. Consequently, if y ∈ K satisfies |x− y| < δ, then

|xi − y| ≤ |xi − x|+ |x− y| < δxi

2
+ δ ≤ δxi

By our choice of δxi
we have |f(y)− f(xi)| < ε

2 and |f(xi)− f(x)| < ε
2 , so

|f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(xi)− f(y)| < ε

and f ∈ Cu(K). ■

Theorem 6 LetA ⊆ R. Then f /∈ Cu(A) ⇐⇒ ∃ε0 > 0 and ∃(an)n∈N, (bn)n∈N ∈
AN satisfying |an − bn| → 0 but |f(an)− f(bn)| ≥ ε0 for all n.

Proof: Exercise! See Theorem 4.4.5, Abbott. ■
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2 Continuous Functions on Connected Subsets of R

2.1 Preservation of Connected and Intermediate Value Theorem
(IVT)

Theorem 7 (Continuous Functions Preserve Connectedness) If A ⊆ R
is connected and f ∈ C(A), then f(A) is connected.

Proof: Suppose f(A) = B ∪ C where A,B ̸= ∅ and A ∩ B = ∅. We will use
Proposition 5, Lecture 9, to show that B∩L(C) ̸= ∅ or L(B)∩C ̸= ∅. Since f(A) =
B ∪ C, taking f−1 of both sides gives A = f−1(B) ∪ f−1(C), but A is connected,
and f−1(B), f−1(C) ̸= ∅ (because B,C ̸= ∅) and f−1(B) ∩ f−1(C) = ∅ (because
B∩C = ∅). Therefore, either L(f−1(B))∩f−1(C) ̸= ∅ or f−1(B)∩L(f−1(C)) ̸= ∅.
WOLOG, suppose the first case, and choose x ∈ L(f−1(B)∩f−1(C). Then ∃(an)n∈N
in f−1(B) − {x} with an → x ∈ f−1(C), which shows that

(
f(an)

)
n∈N lies in

B − {f(x)} and f(an) → f(x) ∈ C, that is f(x) ∈ L(B) ∩ C. ■

Theorem 8 (Intermediate Value Theorem (IVT)) If f is continuous on
a closed and bounded interval [a, b] in R, then every intermediate y-value N
between f(a) and f(b) is attained, that is, ∃c ∈ [a, b] satisfying f(c) = N .

Proof: Exercise 4.5.1, Abbott. ■

Proposition 9 Let ∅ ̸= I ∈ I be a nonempty interval and let f ∈ C(I). Then
f is bijective between I and f(I) iff it is strictly monotonic on I.

Proof:

(1) Suppose f is bijective on I. Let a and b be the endpoints of I, where a < b,
so that (a, b) ⊆ I. Since f is bijective, for any a < x0 < y0 < b we can’t
have f(x0) = f(y0), so we must either have f(x0) < f(y0) or f(x0) > f(y0).
Suppose f(x0) < f(y0). We claim that for any a < x < y < b we will
have f(x) < f(y) and hence that f is strictly increasing on I. For suppose
∃a < x0 < x < y0 < b with f(x0) < f(y0) yet with f(x0) > f(x). Then by
EVT ∃c ∈ (x0, y0) with f(c) = min f([x0, y0]), while by IVT applied to f on
[x0, c] and on [c, y0], we get ∀y ∈ (f(c), f(x0)), ∃x1 ∈ (x0, c), ∃x2 ∈ (c, y0)
with f(x1) = y = f(x2). But x1 < x2, so this contradicts the bijectivity of
f . We conclude that no such x0 < x < y0 exist, and that f must be strictly
increasing on I. A similar argument, for the case f(x0) > f(y0), shows that
f must then be strictly decreasing on I.

(2) Now suppose f is strictly monotonic on I ⊇ (a, b). If f is increasing, then
a < x < y < b =⇒ f(x) < f(y), so that f is injective, and by IVT we know
that f is surjective: ∀z ∈

(
f(x), f(y)

)
= f

(
(x, y)

)
, ∃c ∈ (x, y) with f(c) = y.

A similar argument applies to f decreasing. If need be, we could include the
endpoints a and b themselves, and so extend the argument to closed and half-
open intervals. ■
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Proposition 10 Let K ∈ KR be compact. Then any bijective f ∈ C(K) is in
fact a homeomorphism (continuous bijection with continuous inverse) between
K and f(K).

Proof: Since f ∈ C(K), we know that f−1(Tf(K)) ⊆ TK and f−1(Cf(K)) ⊆ CK . If
f is additionally bijective, then to show that f−1 ∈ C(f(K)) we need to show that
f(TK) = (f−1)−1(TK) ⊆ Tf(K) or f(CK) = (f−1)−1(CK) ⊆ Tf(K). Let C ∈ CK , then
C ⊆ K is compact (Proposition 15, Lecture 08), so f(C) ⊆ f(K) is also compact
(Theorem 1), and therefore closed by Heine-Borel (Theorem 16, Lecture 08). We
conclude that f(C) ∈ Cf(K). ■

Theorem 11 Let ∅ ̸= I ∈ I be a nonempty interval and let f ∈ C(I).

(1) If f is strictly increasing on I, then f−1 is strictly increasing, too, and also

continuous, f−1 ∈ C(f(I)) . Thus, f is a homeomorphism from I to

f(I).

(2) If f is strictly decreasing in I, then f−1 is strictly decreasing, too, and

also continuous, f−1 ∈ C(f(I)) . Thus, f is a homeomorphism from I

to f(I).

Proof: (Exercise 4.5.8, Abbott)

(1) Suppose first that I = [a, b] is closed. Since f ∈ C[a, b], EVT + IVT tell us
f([a, b]) = [m,M ] is a closed and bounded interval, where m = mina≤x≤b f(x)
and M = maxa≤x≤b f(x). If f is increasing, then m = f(a) and M = f(b), so
that f([a, b]) = [f(a), f(b)], and f is a bijection between [a, b] and [f(a), f(b)].
Since [a, b] is compact (Heine-Borel, Theorem 16, Lecture 08), and since f is
bijective, we have by the previous proposition that f is a homeomorphism be-
tween [a, b] and [f(a), f(b)], so that f−1 ∈ C([f(a), f(b)]). It is also obviously
strictly increasing. A similar argument applies to f decreasing.

(2) If I = (a, b) or (a, b] or [a, b), then the above statement could be gotten by
restricting attention to closed and bounded subintervals [x0, y0] of I. Clearly
f−1 ∈ C(f([x0, y0])), and so f−1 ∈ C

(⋃
x0,y0∈(a,b) f([x0, y0])

)
= C(f(a, b)).

The limits limx0↘a f(x0) or limx0↗b f(x0) may or may not be realized by f ,
and these are precisely the three options listed above corresponding to the
inclusion or exclusion of an endpoint into/from I. ■
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