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1 Continuous Functions on Compact Subsets of R

1.1 Preservation of Compactness and Extreme Value Theorem (EVT)

Theorem 1 (Continuous Functions Preserve Compactness) If K € K
and f € C(R), then f(K) € Kg.

Proof 1 (via sequential compactness): (Theorem 4.4.1, Abbott) Let K €
Kr = K§ and f € C(R), and let us show that f(K) € Kg = K§ by showing that
every sequence (yn)nen in f(K) has a convergent subsequence with limit in f(K).
Since each y, € f(K), dx, € K for which y,, = f(z,). Since K is (sequentially)
compact, the sequence (zy,)nen in K has a convergent subsequence (2, )ken with
Zn, — x € K. By the Convergence Criterion (Theorem 23, Lecture 10), we have
Ynp = f(zn,) = f(z) € f(K), because x € K. |

Proof 2 (via compactness): Let K € Kg and f € C(R), and let us show that
f(K) € Kg by showing that every open cover U = {U; |i € I} of f(K) (f(K) C
\U,c; Ui) has a finite subcover. Since f € C(R), Theorem 27, Lecture 10, says each

YU € Tg, so f~1(U) def {f~Y(U;) | i € I} is an open cover of K (apply f !

to both sides of f(K) C U,c; Ui, then K C (J;¢; f~YU;)). But K is compact,

so f~1(U) has a finite subcover f=1(V) € {f=1(TU),..., f~1(Uy,)} still covering

K C U, f~4(U;). Consequently, V def {U1,...,U,} is a finite subcover of f(K)
(just apply f to both sides of K C (JI_, f~1(U3)). |



Theorem 2 (Extreme Value Theorem (EVT)) If @ # K € Kg and f €
C(R), then Ja,b € K such that

f(a) = min £(K) = min f(x)

£(b) = max f(K) = max f(2)

that is, f attains or hits its minimum and maximum y-values on K.

Proof: If K € Kg and f € C(R), then f(K) € Kg by the previous theorem, so
since Kg = K¢ (by Heine-Borel, Theorem 16, Lecture 08), we know that f(K) is
closed and bounded. Since f(K) is nonempty (because K is), Im ECIEY f(K) and

M X sup f(K) by AoC. But these are in the closure f(K) = f(K) (since f(K) €

Cr, Exercises 40-41, Lecture 07), so m, M € f(K), meaning Ja,b € K for which
fla) =m =min f(K) and f(b) = M = max f(K) (since m = inf f(K) = min f(K)
and M = sup f(K) = max f(K) because m, M € f(K) (Proposition 22, Lecture
02)). |

1.2 Compactness and Uniform Continuity

Example 3 Consider f(z) = 22. By Corollary 26, Lecture 10, f € C(R). However,
the continuity is not uniform, in the sense that, though Va € R, Ve > 0, 36 > 0
satisfying (lz —a|l <0 = |[f(z) — f(a)| < <), the § depends on both e and x. To
see this, recall that

|z% — a?| = |z — a||z + a

and we need to bound |z + a|. From 6 <1 we derive
lz—a| <1 <= —la|-1<a-1<z<a+1<lal+1
— 2a/-1<2a—1<z+a<2a+1<2a+1
— |r+a| <2lal+1

(or alternatively, |z + a| < |z| + |a| < (Ja| + 1) + |a|] = 2|a| + 1, using only the first
equivalence). Then we can say that

Va R, Ve >0, 36 & min{1, L} >0,

20al +1
2 —a| = |z—allz+a
< 0-(2|al +1)
|z —al <d = €
< — (2 1
T ES R
= ¢

The key observation: § = d(e,a)! Larger a require smaller §, so that no single delta
works for all @ € R. Any ¢ will not be uniformly applicable on R. |



Definition 4 Let A C R. A function f : A — R is said to be uniformly continuous
on A if

Ve>0,36 >0, Vo,y € A, ([z—y|<éd = |f(z)— f(y)] <e)

Let us denote the set of all uniformly continuous functions on A by

C“(A) L an uniformly continuous functions on A

Note that this is not the case for f(z) = 22 on A = R, because for a fixed § > 0, the
difference |22 — y?| = |x — y||z + y| will be bigger for large x,y satysfying |z —y| < §
than for small z,y (since |z + y| can be made large while keeping |z — y| < ).

Theorem 5 (Compactness and Uniform Continuity) If K € Kr and
f € C(K), then f € C*(K).

Proof: Let £ > 0 and use the continuity of f to find, for each x € K, a §, > 0 such
def

that |z —y| < 6, = |f(z) — f(y)| < /2. Now, U = {V%z(a;) | z € K} covers

K, but since K is compact, U has a finite subcover V = {Vs,, (1), ..., Vi., (2s)}.
2 2

Letting ¢ def min{%,...,é’”T"} we have for each 2 € K C |J;"; Vs, (x;) that

2
x € Vs,, (z;) for one of the i. Consequently, if y € K satisfies |z — y| < J, then
-

O
|{E2—y|§|$Z—£U|+|l'—y|<7l—|—5§5m
By our choice of 0., we have |f(y) — f(z;)| < § and [f(z;) — f(z)] < §, so

[f(@) = f()| < |f(2) = fla)| + | f () = f(y)l <e
and f € C*(K). ]

Theorem 6 Let A CR. Then f ¢ C*(A) <= Teo > 0 and I(an)nen, (bn)nen €
AN satisfying |ay, — bn| — 0 but | f(an) — f(bn)| > €0 for all n.

Proof: Exercise! See Theorem 4.4.5, Abbott. |



2 Continuous Functions on Connected Subsets of R

2.1 Preservation of Connected and Intermediate Value Theorem
(IVT)

Theorem 7 (Continuous Functions Preserve Connectedness) If A C R
is connected and f € C(A), then f(A) is connected.

Proof: Suppose f(A) = BUC where A,B # @ and AN B = @. We will use
Proposition 5, Lecture 9, to show that BNL(C) # & or L(B)NC # @. Since f(A) =
B UC, taking f~! of both sides gives A = f~}(B) U f~1(C), but A is connected,
and f~Y(B), f~}(C) # @ (because B,C # @) and f~1(B)N f~1(C) = @ (because
BNC = @). Therefore, either L(f~1(B))Nf~Y(C) # @or f~H(B)NL(f~1(C)) # @.
WOLOG, suppose the first case, and choose x € L(f~1(B)Nf~1(C). Then I(a,)nen
in f~Y(B) — {z} with a, — z € f~(C), which shows that (f(an))neN lies in
B —{f(x)} and f(an) — f(z) € C, that is f(z) € L(B)NC. [ ]

Theorem 8 (Intermediate Value Theorem (IVT)) If f is continuous on
a closed and bounded interval [a,b] in R, then every intermediate y-value N
between f(a) and f(b) is attained, that is, Ic € [a, b] satisfying f(c) = N.

Proof: Exercise 4.5.1, Abbott. |

Proposition 9 Let @ # I € T be a nonempty interval and let f € C(I). Then
f is bijective between I and f(I) iff it is strictly monotonic on I.

Proof:

(1) Suppose f is bijective on I. Let a and b be the endpoints of I, where a < b,
so that (a,b) C I. Since f is bijective, for any a < zy < yp < b we can’t
have f(zg) = f(yo), so we must either have f(zo) < f(vo) or f(zo) > f(vo)-
Suppose f(zg) < f(yo). We claim that for any a« < z < y < b we will
have f(z) < f(y) and hence that f is strictly increasing on I. For suppose
da <y < z < yo < b with f(zo) < f(yo) yet with f(zo) > f(z). Then by
EVT 3¢ € (zg,yo) with f(¢) = min f([xo, yo]), while by IVT applied to f on
[0, ] and on [c,yo], we get Yy € (f(c), f(xo)), x1 € (mo, ), Txa € (¢, y0)
with f(z1) = y = f(z2). But &1 < x2, so this contradicts the bijectivity of
f- We conclude that no such zy < z < yg exist, and that f must be strictly
increasing on I. A similar argument, for the case f(zg) > f(yo), shows that
f must then be strictly decreasing on I.

(2) Now suppose f is strictly monotonic on I D (a,b). If f is increasing, then
a<zr<y<b = f(x) < f(y), so that f is injective, and by IVT we know
that f is surjective: Vz € (f(z), f(y)) = f((z,y)), Jc € (x,y) with f(c) =y.
A similar argument applies to f decreasing. If need be, we could include the
endpoints a and b themselves, and so extend the argument to closed and half-
open intervals. |



Proposition 10 Let K € Kr be compact. Then any bijective f € C(K) is in
fact a homeomorphism (continuous bijection with continuous inverse) between

K and f(K).

Proof: Since f € C(K), we know that f~!(T;x)) € Tk and f~'(Csk)) C Ck. If
f is additionally bijective, then to show that f~! € C(f(K)) we need to show that
F(Tx) = (F71)"1Tk) C Ty or f(Cx) = (f71) 71 (Cx) € Ty(x)- Let C € Cc, then
C C K is compact (Proposition 15, Lecture 08), so f(C) C f(K) is also compact
(Theorem 1), and therefore closed by Heine-Borel (Theorem 16, Lecture 08). We
conclude that f(C) € Cy(k). [ |

Theorem 11 Let & # I € T be a nonempty interval and let f € C(I).

(1) If f is strictly increasing on I, then f~! is strictly increasing, too, and also

continuous, | f~1 € C(f(I))| Thus, f is a homeomorphism from I to
f).
(2) If f is strictly decreasing in I, then f~! is strictly decreasing, too, and

also continuous, | f~* € C(f(I))|. Thus, f is a homeomorphism from I

to f(I).

Proof: (Exercise 4.5.8, Abbott)

(1) Suppose first that I = [a,b] is closed. Since f € Cla,b], EVT + IVT tell us
f([a,b]) = [m, M] is a closed and bounded interval, where m = min,<,<p f(z)
and M = maxg<z<p f(z). If f is increasing, then m = f(a) and M = f(b), so
that f([a,b]) = [f(a), f(b)], and f is a bijection between [a,b] and [f(a), f(D)].
Since [a, b] is compact (Heine-Borel, Theorem 16, Lecture 08), and since f is
bijective, we have by the previous proposition that f is a homeomorphism be-
tween [a,b] and [f(a), f(b)], so that f=1 € C([f(a), f(b)]). It is also obviously
strictly increasing. A similar argument applies to f decreasing.

(2) If I = (a,b) or (a,b] or [a,b), then the above statement could be gotten by
restricting attention to closed and bounded subintervals [zg, yo] of I. Clearly
f=t € C(f([wo, ), and so =1 € C(Uyy yoe(an £ ([0, 50l)) = C(f(a,)).
The limits limg,~\ o f(2z0) or limg, = f(2o) may or may not be realized by f,
and these are precisely the three options listed above corresponding to the
inclusion or exclusion of an endpoint into/from I. |
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