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1 Why Do We Need to Define a Continuous Function?

We are finally in a position to develop the theory of the calculus. Having characterized
the one truly essential property of R, the Axiom of Completeness (AoC), and seen
some of its equivalent formulations (NIP, MCT, BW, CC), we will now finish its
topological characterization by addressing the continuous functions on R. Without
this notion the derivative cannot be properly defined, and the calculus cannot be
solidly grounded.

1.1 Math as a Craft

Every student of calculus comes away knowing the rules of differentiation which
break down into the particular derivative rules of known functions and the generic
rules concerning algebraic combinations of differentiable functions:

(1) the particular derivatives, starting with the power rule,

(xn)′ = nxn−1

the exponential and log derivative rules,

(ex)′ = ex (lnx)′ = 1
x

(ax)′ = ax ln a (loga x)
′ = 1

x ln a

and the trig derivative rules,

(sinx)′ = cosx (cosx)′ = − sinx

(secx)′ = secx tanx (cscx)′ = − cscx cotx

(tanx)′ = sec2 x (cotx)′ = − csc2 x

(2) the generic rules for all differentiable functions f and g and all constants c,
starting with the sum/differentce and scalar multiplication rules,

(f ± g)′(x) = f ′(x)± g′(x), (cf)′(c) = cf ′(x),

the product and quotient rules,

(fg)′(x) = f ′(x)g(x) + f(x)g′(x),

(
f(x)

g(x)

)′
=

f ′(x)g(x)− f(x)g′(x)

g2(x)

and, lastly, the inverse function rule (valid whenever the denominator ̸= 0),

(f−1)′(x) =
1

f ′
(
f−1(x)

)
Then, come the Mean Value Theorem, the First and Second Derivative Tests, and
L’Hôpital’s Rule, and before we know it we’re on to Riemann integral.
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Figure 1: Father Guido’s Five
Minute University.

The definition of the derivative,

f ′(a)
def
= lim

x→a

f(x)− f(a)

x− a

comes almost as an annoyance, a technical af-
terthought distracting us from the easy and rather
mechanical application of the derivative rules, by
which we can quickly finish homework problems and
get back to our favorite activity, free play. Isn’t the
purpose of rules to free us from the burden of te-
dious checking of cases, after all?

We endure the definition as we must, and the
mandatory list of tedious and artificial “counterex-
amples” (which seem to almost invalidate the rules),
in order to get through the exam, following which
we forget about them. We retain only the rules,
validating in this way Father Guido Sarducci’s ped-
agogical principle, engraved upon the entrance to
his Five Minute University, that “One could learn
in five minutes what the average college graduate
remembers five years after graduation.”

But this is like the California Gold Rush, when the
makers of shovels and sieves made fortunes selling to amateur miners all too eager
to rush out and start digging up the fabled gold. In our practically oriented culture
we are encouraged to think of math as a mere tool, like a shovel, which we can just
“apply” to dig out the gold of applied problems. Yet here, as in the “real world,” it is
in fact the tool-makers who come away with the gold. In a very real sense, the craft
of tool-making is prior to the other crafts which depend on the tool.

The craft of tool-making has to be appreciated on its own merits. Mathematics pro-
duces conceptual tools, very refined and sharp, whose true value is readily appreciated
by its users, the appliers of math. Why are these tools so sharp, what is their de-
sign? From this point of view, the idea that definitions and subtle counterexamples
are tedious “work,” like bureacratic paperwork that has to be filled out in order to
get back to free play, is the thinking of a tool user, not a tool maker. Our craft is
the proper construction of tools, and for this purpose definitions are essential. They
define the problem which the subsequent theory sets out to resolve, in precise terms.
The whole art consists in coming up with the right definitions, the right axioms, the
right ordering of concepts in such a way that the deeper ideas flow elegantly and
naturally out of the axioms, with utmost precision. A good theory, when parsed for
its meaning, should render a systematic classification of its concepts, which have been
clearly articulated in the definitions.
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1.2 Classification of Functions

Let us keep this larger classification goal in mind. The role of definitions in such an
endeavour is to articulate the criteria for differentiation between distinct conceptual
types (e.g. continuous vs. discontinuous functions, differentiable vs non-differentiable
functions, differentiable vs. continuous functions, etc.). The job of the theorems and
examples is to map out and refine the classification of the different types (e.g. differ-
entiable functions are continuous, but there are more continuous functions than just
the differentiable (as shown by a counterexample)). Ideally, the classification would
be exhaustive, capable of answering any question within its purview with perfect
precision.

Observation 1 If we take the convergence issues implicit in the definitions of func-
tional limit, continuity and the derivative seriously, we discern quickly enough
the depths lurking beneath the tranquil surface. Let f : A → B, where A ⊆ R is the
domain, and f(A) ⊆ B is the range (the codomain is B).

(1) How should we characterize the functional limit L at x = a,

lim
x→a

f(x) = L

It seems somewhat of a topological requirement,

x → a ∈ L(A) =⇒ f(x) → L ∈ L(f(A)) ∪ I(f(A))

(2) What about continuity at x = a,

lim
x→a

f(x) = f(a)

Now it appears that

x → a ∈ A =⇒ f(x) → f(a) ∈
(
f(A) ∩ L(f(A))

)
∪ I(A)︸ ︷︷ ︸

= f(A)

(3) How are we to understand the derivative at x = a,

lim
x→a

f(x)− f(a)

x− a
= f ′(a)

It seems we are back to the functional limit, with L = f ′(a), but with f replaced

by g(x)
def
= f(x)−f(a)

x−a ,

x → a ∈ L(A) =⇒ g(x) → f ′(a) ∈ L(g(A)) ∪ I(g(A)) ■

While functional limits are a necessary part of defining continuity, the really critical
thing for continuity is that L = f(a), so that a ∈ A and not just in L(A). In practice,
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we use the functional limit to determine discontinuities (namely, those for which L
exists but L ̸= f(a)).

When we get to differentiability, however, we see an entirely different requirement on
f . By our definitions, differentiability implies continuity, but the converse does not
hold. This sets continuous functions apart from differentiable functions. Continuity
is more basic, more primitive, and differentiability a sort of “extra” feature. Let us
spell these observations out in terms of classification and the AoC.

Observation 2 One reason to make a distinction between continuous and differen-
tiable functions on A concerns classification. The set of all differentiable functions on
A, D(A), forms a strictly smaller subset of the set of all continuous functions on A,
C(A),

D(A) ⊊ C(A)

This says that analysis, which in its differential aspect studies subspaces of D(A),
concerns itself here with a strictly smaller subcategory than the larger, and more
basic, parent category of topology. ■

Observation 3 Another reason to make a distinction between continuous and dif-
ferentiable functions on A concerns the Axiom of Completeness. The Intermediate
Value Theorem is logically equivalent to the AoC , whereas differentiability is a much
more stringent requirement. ■
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2 Defining a Continuous Function

2.1 Adherent Points

Definition 4 Let A be a subset of R. We say x ∈ R is an adherent point of A if

∀ε > 0, Vε(x) ∩A ̸= ∅

We denote the set of all adherent points of A by

A(A)
def
= all adherent points of A

= {x ∈ R | ∀ε > 0, Vε(x) ∩A ̸= ∅}

Exercise 5 Show that for any A ⊆ R we have A(A) = A = L(A) ∪ I(A) . ■

Remark 6 This exercise shows that the condition on x ∈ L(A), that ∀ε > 0 we have
Vε(x) ∩ (A− {x}) ̸= ∅, when weakened to Vε(x) ∩A ̸= ∅ forces isolated points to be
adherent points, I(A) ⊆ A(A), and in fact A(A)− L(A) = I(A). ■

2.2 Functional Limits

Let f : A → B, where A,B ⊆ R.

Definition 7 (Functional Limit) We say f has a functional limit of L at a limit

point x = a ∈ L(A) , and write

lim
x→a

f(x) = L

if
∀ε > 0, ∃δ > 0,

(
0 < |x− a| < δ =⇒ |f(x)− L| < ε

)
■

Remark 8 In terms of neighborhoods, this means

∀ε > 0, ∃δ > 0,
(
x ∈ Vδ(a) ∩ (A− {a})︸ ︷︷ ︸

̸= ∅, bec a ∈ L(A)

=⇒ f(x) ∈
̸= ∅ bec f(x) ∈︷ ︸︸ ︷
Vε(L) ∩ f(A)︸ ︷︷ ︸

L ∈ A(f(A))

)

Topologically, this forces L to be an adherent point of f(A),

L ∈ A
(
f(A)

)
= L(f(A)) ∪ I(f(A))
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It may or may not be the case that L ∈ f(A), but if it is, we do not remove it (so as
to get Vε(a)∩(f(A)−{L})), because we want to allow constant functions f(x) ≡ L to
have a limit. In their case, f(A) = {L} is isolated, so it is not a limit point. Indeed,
in this case f(A)− {L} = {L} − {L} = ∅. ■

Remark 9 Or yet another way to say it: ∀ε > 0, ∃δ > 0, so that the graph of f over
Vδ(a) ∩ (A− {a}) lies entirely in the divided rectangle

graph f ⊆
(
(a− δ, a) ∪ (a, a+ δ)︸ ︷︷ ︸

= Vδ(a)−{a}

)
× (L− ε, L+ ε)︸ ︷︷ ︸

= Vε(L)

a subset of Vδ(a)× Vε(L) missing {a} × Vε(L). ■

Example 10 Consider the example of
sinx

x
on A = R− {0}.

−5 5

0.5

1

x

y
L

f(x) =
sinx

x

Figure 2: lim
x→0

sinx

x
= 1.

Here, A = (−∞, 0) ∪ (0,∞) , a = 0 ∈ L(A)−A and L = 1 ∈ L(f(A))− f(A) . ■

Example 11 Consider the example of the constant function f(x) ≡ 1.

−5 5

0.5

1

1.5

x

y

L = 1

f(x) ≡ 1

Here, A = R , any a ∈ A will do, and L = 1 ∈ f(A) = {1} . ■
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Theorem 12 (Convergence Criterion for the Limit of a Function)
Let A ⊆ R, and let f : A → R be any function. If a ∈ L(A), then

lim
x→a

f(x) = L ⇐⇒ lim
n→∞

f(an) = L

for all sequences (an)n∈N in A− {a} with an → a.

Proof:

(1) If lim
x→a

f(x) = L, then ∀ϵ > 0, ∃δ > 0, such that

f
(
Vδ(a) ∩ (A− {a})

)
⊆ Vε(L) ∩ f(A)

Consequently, if (an)n∈N is a sequence in A−{a} converging to a, then ∃N ∈ N
such that n ≥ N =⇒ an ∈ Vδ(a)∩(A− {a}). Our assumptions about f
then force all f(an) into Vε(L) ∩ f(A), meaning |f(an) − L| < ε, whence
lim
n→∞

f(an) = L.

(2) Contrapositive: If lim
x→a

f(x) ̸= L, then ∃ε > 0, ∀δ > 0 such that

f
(
Vδ(a) ∩ (A− {a})

)
̸⊆ Vε(L) ∩ f(A)

suggesting that, for this ε > 0, letting δn = 1
n ↘ 0 (and so making the original

sequence an converge to a), we have

∀n ∈ N, ∃f(an) ∈ f
(
V 1

n
(a) ∩ (A− {a})

)
− Vε(L)(

that is |f(an)− L| ≥ ε instead of < ε
)

that is, f(an) ̸→ L. ■

Theorem 13 (Alegebraic Limit Laws for Functional Limits) Let A ⊆ R
and a ∈ L(A), and let f, g : A → R be any functions. If

lim
x→a

f(x) = L, lim
x→a

g(x) = M

exist, then the functions cf , f ± g, fg and f/g (if g ̸= 0) also have limits, and

lim
x→a

cf(x) = cL (scalar multiple law)

lim
x→a

f(x)± g(x) = L±M (sum/difference law)

lim
x→a

f(x)g(x) = LM (product law)

lim
x→a

f(x)

g(x)
=

L

M
(quotient law)

Proof: Since limx→a f(x) = L ⇐⇒ limn→∞ f(an) = L for all sequences an → a
in A− {a}, we can apply the Algebraic Limit Laws for Sequences. ■
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Remark 14 The collection of all functions f : A → R possessing a limit L at a ∈
L(A) forms a real vector space, and in fact, because it also possesses a product, forms
an R-algebra. This is not a particularly interesting R-algebra, but it will become so
when we replace L with f(a), i.e. when we go over to continuous functions. ■

Theorem 15 (Order Limit Laws for Functions) Let A ⊆ R and a ∈ L(A),
and let f, g : A → R be any functions. If

lim
x→a

f(x) = L, lim
x→a

g(x) = M

exist, then

(∀x ∈ A, f(x) ≥ 0) =⇒ L ≥ 0

(∀x ∈ A, f(x) ≤ g(x)) =⇒ L ≤ M

Proof: Since limx→a f(x) = L ⇐⇒ limn→∞ f(an) = L for all sequences an → a
in A− {a}, we can apply the Order Limit Laws for Sequences. ■

Example 16 Consider the function f(x) =
|x− a|
x− a

=

{
1, if x ≥ a

−1, if x ≤ a

−5 5

−1

1

x

y

f(x) =
|x− a|
x− a

a

Here, A = (−∞, a) ∪ (a,∞) , a ∈ L(A)−A and lim
x→a

f(x) DNE , because if we take

ε = 1, then for all δ > 0 there exists a < x ∈ Vδ(a) ∩ (A − {a}) for which |f(x) −
(−1)| = |1 + 1| = 2 ≥ 1 = ε and there exists a > x ∈ Vε(a) ∩ (A − {a}) for which
|f(x)− 1| = | − 1− 1| = 2 ≥ 1 = ε. That is, L ̸= ±1, and indeed, no other choices for
L suffice either, by analogous reasoning. We conclude that L DNE. ■
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Definition 17 (Left and Right Limits) We say f has a left (functional) limit
of L− at a limit point a ∈ L(A), and write

lim
x→a−

f(x) = L−

if
∀ε > 0, ∃δ > 0,

(
0 < a − x < δ =⇒ |f(x)− L−| < ε

)
(0 < a− x < δ ⇐⇒ a− δ < x < a) We say f has a right (functional) limit of L+

at a limit point a ∈ L(A), and write

lim
x→a+

f(x) = L+

if
∀ε > 0, ∃δ > 0,

(
0 < x − a < δ =⇒ |f(x)− L+| < ε

)
(0 < x− a < δ ⇐⇒ a < x < a+ δ). ■

Proposition 18 (Two-Sided Limits) Let A ⊆ R, a ∈ L(A), and f : A → R.
Then,

lim
x→a

f(x) = L exists ⇐⇒ L± = lim
x→a±

f(x) exist and L+ = L−

(in which case L = L±)

Proof: (Exercise 4.2.10, Abbott)

(1) If L exists, then L± = L exist too because ∀ε > 0, ∃δ > 0 with 0 < |x− a| <
δ =⇒ |f(x)−L| < ε. Now, the δ-inequality expands into a double inequality,

0 < |x− a| < δ ⇐⇒ a− δ < x < a or a < x < a+ δ

from which we see that x → a− uses a− δ < x < a and x → a+ uses
a < x < a+ δ to show that |f(x)− L| < ε, that is L = limx→a± f(x) = L±.

(2) If limx→a± f(x) = L+ = L− = limx→a− f(x), then let L
def
= L± and reverse

the logic above: x → a− uses a− δ < x < a to show |f(x) − L−| < ε there,
and x → a+ uses a < x < a+ δ to show |f(x)−L+| < ε there, but the double
inequality folds into one,

a− δ < x < a or a < x < a+ δ ⇐⇒ 0 < |x− a| < δ

which shows f(x) → L
def
= L± in the functional limit sense. ■
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2.3 Continuous Functions

Definition 19 Let A ⊆ R. We call B ⊆ A (relatively) open in A if B = O∩A for
some O ∈ TR, and we call B ⊆ A (relatively) closed in A if B = C ∩ A for some

C ∈ CR. Let us denote the set of (relatively) open subsets of A by TA and the set of

(relatively) closed subsets of A by CA . ■

Let f : A → B, where A,B ⊆ R.

Definition 20 (Continuity) We say that f is continuous at a point a ∈ A, and
write

lim
x→a

f(x) = f(a)

if
∀ε > 0, ∃δ > 0,

(
|x− a| < δ =⇒ |f(x)− f(a)| < ε

)
We say f is continuous on a set A if it is continuous at all a ∈ A. Let

C(A)
def
= {f : A → R | f is continuous on A}

denote the set of all continuous functions on A. ■

Remark 21 In terms of neighborhoods, this means

∀ε > 0, ∃δ > 0,
(
x ∈

∈ TA︷ ︸︸ ︷
Vδ(a) ∩A︸ ︷︷ ︸
x, a ∈A

=⇒ f(x) ∈

∈ Tf(A)︷ ︸︸ ︷
Vε

(
f(a)

)
∩ f(A)︸ ︷︷ ︸

f(x), f(a) ∈ f(A)

)

or equivalently

∀ε > 0, ∃δ > 0, f
(
Vδ(a) ∩A

)
⊆ Vε

(
f(a)

)
∩ f(A)

It is now the case that a ∈ A(A), but specifically in the part A(A) ∩ A = A. Note
that we could have a ∈ I(A), in which case we have defined continuity at an isolated
point. Aditionally, we now not only have f(a) ∈ A(f(A)), but specifically f(a) ∈
A(f(A)) ∩ f(A) = f(A). ■

Remark 22 We break down the defining condition of continuity into three parts:

lim
x→a

f(x) = f(a) ⇐⇒


(1) ∃L = lim

x→a
f(x)

(2) a ∈ A (so that f(a) is defined)

(3) L = f(a)

 ■

Immediately from the functional limit convergence criterion and limit laws we have
the following analogues for continuous functions:
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Theorem 23 (Convergence Criterion for Continuous Functions)
Let A ⊆ R, and let f : A → R. For any a ∈ A,

lim
x→a

f(x) = f(a) ⇐⇒ lim
n→∞

f(an) = f(a) = f( lim
n→∞

an)

for all sequences (an)n∈N in A with an → a.

Proof: See Theorem 12 above. ■

Theorem 24 (Algebraic Limit Laws for Continuous Functions)
If f : A → R and g : A → R are continuous at a ∈ A, then the functions cf ,
f ± g, fg and f/g (if g ̸= 0) are also continuous at a, and

(1) lim
x→a

cf(x) = cf(a) = c lim
x→a

f(x)

(2) lim
x→a

f(x)± g(x) = f(a)± g(a) =
(
lim
x→a

f(x)
)
±
(
lim
x→a

g(x)
)

(3) lim
x→a

f(x)g(x) = f(a)g(a) =
(
lim
x→a

f(x)
)(

lim
x→a

g(x)
)

(4) lim
x→a

f(x)

g(x)
=

f(a)

g(a)
=

(
lim
x→a

f(x)
)(

lim
x→a

g(x)
) (g ̸= 0)

We conlcude that C(A) forms a real vector space, in fact an R-algebra .

Proof: See Theorem 13 above. ■

Notation 25 Denote the set of all polynomials with real coefficients by

R[x] def
=

{
p(x) =

n∑
k=0

akx
k

∣∣∣∣ ak ∈ R, n ∈ N

}

and the set of all rational functions by

R(x) def
=

{
p(x)

q(x)

∣∣∣∣ p, q ∈ R[x]
}

■
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Corollary 26 All polynomials are continuous on all of R,

R[x] ⊆ C(R)

and all rational functions p(x)/q(x) ∈ R(x) are continuous wherever q(x) ̸= 0.

Proof: (Example 4.3.5, Abbott) First of all, note that f(x) = x ∈ C(R) because
∀a ∈ R, ∀ε > 0, ∃δ def

= ε such that 0 < |x− a| < δ implies |f(x)− f(a)| = |x− a| <
δ = ε. As a result of the product law (3) above, we have x2 ∈ C(R), and by
induction xk ∈ C(R). By the scalar multiple law (1) we have that akx

k ∈ C(R)
for all ak ∈ R, while by induction on the sum law (2) we have any polynomial
p(x) =

∑n
k=0 akx

k ∈ C(R). Finally, apply law (4) for rational functions. ■

Theorem 27 (Open Set Characterization of Continuity) For any subsets
A,B ⊆ R and any f : A → B we have

f ∈ C(A) ⇐⇒
(
O ∈ TB =⇒ f−1(O) ∈ TA

)

Proof:

(1) Let f ∈ C(A) and let O ∈ TB . To show f−1(O) ∈ TA, we must show that
every point a ∈ f−1(O) is interior to f−1(O). Since f is continuous at a, we
have

∀ε > 0, ∃δ > 0,
(
|x− a| < δ =⇒ |f(x)− f(a)| < ε

)
or equivalently

∀ε > 0, ∃δ > 0, f
(
Vδ(a) ∩A

)
⊆ Vε

(
f(a)

)
∩ f(A)

But O is open in B and f(a) ∈ O (O = U∩B for some U ∈ TR), so ∃ε > 0 such
that Vε

(
f(a)

)
∩B ⊆ O = U ∩B (Vε

(
f(a)

)
⊆ U). Using this ε, the required δ

then gives f(Vδ(a)∩A) ⊆ Vε

(
f(a)

)
∩B ⊆ O, which shows (by taking preimages

f−1 of both sides) that Vδ(a) ∩A ⊆ f−1(O), so f−1(O) ∈ TA.
(2) Conversely, suppose

(
O ∈ TB =⇒ f−1(O) ∈ TA

)
, and let us show that

f ∈ C(A). Let a ∈ A and choose ε > 0. Since Vε

(
f(a)

)
∩ B ∈ TB , we know

immediately that f−1
(
Vε

(
f(a)

)
∩B

)
∩A ∈ TA. Since a lies in this open set, it

must be interior, so ∃δ > 0 such that Vδ(a)∩A ⊆ f−1
(
Vε

(
f(a)

)
∩B

)
∩A, from

which it follows directly that f(Vδ(a) ∩ A) ⊆ Vε

(
f(a)

)
∩ f(A) (f(A) ⊆ B),

making f continuous at a. ■
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Corollary 28 (Closed Set Characterization of Continuity) For any sub-
sets A,B ⊆ R and any f : A → B we have

f ∈ C(A) ⇐⇒
(
C ∈ CB =⇒ f−1(C) ∈ CA

)

Proof: This follows immediately from the fact that C ∈ CR ⇐⇒ Cc ∈ TR. In-
tersecting C with B gives C ∩ B ∈ CB ⇐⇒ Cc ∩ B ∈ TB . Finally, observe that
f−1(Cc)∩A = (f−1(C))c ∩A ∈ TA ⇐⇒ f−1(C)∩A ∈ CA. Combine these facts and
the previous theorem. ■

Theorem 29 (Compositions of Continuous Functions are Continuous)
Let g : A → B and f : B → C be functions, where A,B,C ⊆ R. If f ∈ C(B)
and g ∈ C(A), then f ◦ g ∈ C(A).

Proof 1: If O ∈ TC , then by Theorem 27 f−1(O) ∈ TB and g−1(f−1(O)) =
(f ◦ g)−1(O) ∈ TA, so again by Theorem 27 f ◦ g ∈ C(A). ■

Proof 2: If a ∈ A, then because g ∈ C(A) we have ∀ε > 0, ∃δ > 0 such that
|x−a| < δ =⇒ |g(x)−g(a)| < ε. But since f ∈ C(B) we have for all η > 0, ∃ε > 0
with |g(x)− g(a)| < ε =⇒ |f(g(x))− f(g(a))| < η, so that f ◦ g is continuous at a.
But this is true for all a ∈ A, so f ◦ g ∈ C(A). ■

Proof 3: By Theorem 23 f and g are convergence preserving, so for all a ∈ A and
all sequences (an)n∈N in A converging to a we have

lim
n→∞

an = a =⇒ lim
n→∞

g(an) = g(a)

=⇒ lim
n→∞

f(g(an)) = f(g(a))

and so f ◦ g is convergence preserving, which means that it is continuous at a ∈ A.
But this is true for all a ∈ A, so f ◦ g ∈ C(A). ■
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3 Examples

Example 30 Show that lim
x→3

3x− 5 = 4 using the definition of a limit.

Proof:
(1) Scratch work:. Let ε > 0 and see how to find a δ > 0 so that 0 < |x− 3| < δ

forces |f(x)− 4| < ε: well,

|f(x)− 4| = |(3x− 5)− 4| = |3x− 9| = 3|x− 3|

It seems that δ
def
= ε

3 > 0 will do the job.

(2) Proof:

∀ε > 0, ∃δ def
= min

{
1,

ε

3

}
,|x− 3| < δ =⇒


|(3x− 5)− 4| = 3|x− 3|

< 3δ

= 3 · ε
3

= ε





Example 31 Show that lim
x→−3

x2 = 9 using the definition of a limit.

Proof:
(1) Scratch work: Let ε > 0 and see how to find a δ > 0 so that 0 < |x− (−3)| =

|x+ 3| < δ forces |x2 − 9| < ε: well,

|x2 − 9| = |x− 3||x+ 3|

so knowing that |x + 3| < δ, we would like to know if we can bound |x − 3|
by M , for then we could let δ = ε

M . Let’s try to bound |x − 3|. Suppose
0 < δ ≤ 1, to start, for then

|x+ 3| < δ ≤ 1 ⇐⇒ −1 (− 6 ) < x+ 3 (− 6 ) < 1 (− 6 )

⇐⇒ −7 < x− 3 < −5 < 7

⇐⇒ |x− 3| < 7

So, let M = 7 and δ = ε
7 .

(2) Proof: Since |x+ 3| < δ ≤ 1 ⇐⇒ |x− 3| < 7, we have

∀ε > 0, ∃δ def
= min

{
1,

ε

7

}
,|x− 3| < δ =⇒



|x2 − 9| = |x− 3||x+ 3|
< 7δ

= 7 · ε
7

= ε
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Example 32 Show that lim
x→25

√
x = 5 using the definition of a limit.

Proof:
(1) Scratch work: Let ε > 0 and see how to find a δ > 0 so that 0 < |x− 25| < δ

forces |
√
x− 5| < ε: well,

|x− 25| = |
√
x− 5||

√
x+ 5| ⇐⇒ |x− 25|

|
√
x+ 5|

= |
√
x− 5|

so if we could bound |
√
x + 5| from below (away from 0), then we will have

bound 1
|
√
x+5| above. Let’s try to do this. Suppose 0 < δ ≤ 1 to start, for

then

|x− 25| < δ ≤ 1 ⇐⇒ −1 < x− 25 < 1

⇐⇒ 24 < x < 26

⇐⇒ 2
√
6 + 5 <

√
x+ 5 <

√
26 + 5

Therefore, 2
√
6 + 5 < |

√
x+ 5|, so 1

|
√
x+5| <

1
2
√
6+5

.

(2) Proof: Since |x− 25| < 1 ⇐⇒ 1
|2
√
6+5| <

1
2
√
6+5

, we have

∀ε > 0, ∃δ def
= min

{
1, ε(2

√
6 + 5)

}
,

|x− 25| < δ =⇒



|
√
x− 5| =

|x− 25|
|
√
x+ 5|

< δ · 1

2
√
6 + 5

= ε(2
√
6 + 5) · 1

2
√
6 + 5

= ε
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4 Exercises

Exercise 33 Find functions f, g : R → R for which lim
x→a

f(x) = b and lim
y→b

g(y) = c

but for which lim
x→a

g(f(x)) ̸= c. ■

Exercise 34 If f ∈ C(R), show that |f | ∈ C(R). Show by an example that the
converse is false. ■

Exercise 35

(a) Fix a ∈ R and define f(x)
def
= |x− a|. Show that f ∈ C(R).

(b) (Exercise 4.3.12, Abbott) Let C ∈ CR be closed, and define

f(x)
def
= inf{ |x− a|

∣∣ a ∈ C}

Show that f ∈ C(R) and that f ̸= 0 on C. ■

Exercise 36 (Exercise 4.3.10, Abbott)

(a) Show that for all a, b ∈ R we have

max{a, b} =
1

2

(
(a+ b) + |a− b|

)
and min{a, b} =

1

2

(
(a+ b)− |a− b|

)
(b) If f, g ∈ C(A), show that, for h(x)

def
= max{f(x), g(x)} and k(x)

def
= min{f(x), g(x)}

we have

h
def
= max{f, g} ∈ C(A)

k
def
= min{f, g} ∈ C(A)

(c) Using induction on part (b) we can show that if f1, . . . , fn ∈ C(A), then

h
def
= max{f1, . . . , fn} ∈ C(A)

k
def
= min{f1, . . . , fn} ∈ C(A)

too. To see that this may fail in the infinite case, consider the infinite sequence
of functions given by

fn(x)
def
=

{
1, if |x| ≥ 1

n

n|x|, if |x| < 1
n

Show that each fn ∈ C(R), but that

h
def
= sup{fn | n ∈ N} /∈ C(R) ■
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