Math 2400 Midterm Review 2

- 1. Consider the surface S determined by the equation $2x^2 + 3y^2 + z^2 = 20$.
 - (a) Verify that the point P = (2, 1, 3) is a point on S and find the equation of the tangent plane to S at this point.
 - (b) The above equation defines z implicitly as a function of x and y, z = f(x, y). Find the local linear approximation for f(x, y) at (2, 1).
 - (c) Approximate the value of z corresponding to x = 1.97 and y = 1.12.
- 2. Let $w = f(\rho)$, where $\rho = \sqrt{x^2 + y^2 + z^2}$. Show that

$$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)^2 = \left(\frac{\partial f}{\partial \rho}\right)^2.$$

3. An object's specific gravity S can be found using the formula

$$S = \frac{A}{A - W}$$

where A is the number of pounds the object weighs in air and W is the number of pounds the object weighs in water. The weight in air A is measured to be 10 ± 0.1 lbs, and the weight in water W is measured to be 8 ± 0.08 lbs. Use differentials to estimate the maximum possible error in calculating specific gravity.

4. Consider the function

$$f(x,y) = \begin{cases} \frac{x^3 y^2}{x^4 + y^4} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(a) Is f(x,y) continuous everywhere? If not, where is it not continuous.

- (b) What are $f_x(0,0)$ and $f_y(0,0)$?
- (c) Are $f_x(x, y)$ and $f_y(x, y)$ continuous?
- (d) Is f(x,y) differentiable everywhere? If not, where is it not differentiable.
- 5. An airline limits the size of luggage that a passenger can carry by requiring that the sum of the length, width, and height be at most 135 cm. Find the largest volume of luggage that a passenger is allowed to carry.
- 6. (a) Find the point on the paraboloid $z = x^2 + y^2$ that is closest to the point (3, 4, -1).
 - (b) Find a vector normal to the paraboloid $z = x^2 + y^2$ at the point found in (a).
 - (c) Find the tangent plane of the paraboloid $z = x^2 + y^2$ at the point found in (a).
 - (d) Find the vector from the point on the paraboloid you found in (a) to (3, 4, -1). What is the cross product of this vector with the vector you found in part (b)?
 - (e) Suppose you are standing on the paraboloid at the point you found in (a). If you want to stay on the surface and increase z the fastest, in what 3D direction do you want to travel?
- 7. (a) What is the second order Taylor polynomial $p_2(x)$ for $f(x) = e^x$ at x = 0?
 - (b) What is the second order Taylor polynomial $P_2(x,y)$ for $f(x,y) = e^{2x+3y}$ at (0,0)?
 - (c) With your answer $p_2(x)$ from part (a), what is $q(x,y) = p_2(2x)p_2(3y)$? How does q(x,y) compare to your answer in part (b)?