"Quiz" 8

MATH 2400

August 1 - August 6, 2012

- 1. Let $\vec{F} = \langle y, -x, 10(x^2 + y^2)z \rangle$, and σ be the surface $z = 2\sqrt{x^2 + y^2}$ for $0 \le z \le 9$, with outward orientation. Find the flux of \vec{F} through σ by
 - (a) parameterizing the surface using cylindrical coordinates.

(b) using the function parametrization (or projection).

2. Find the flux of $\vec{F} = \langle z - x - y, x - y - z, y - x - z \rangle$ through σ , which is the portion of $x^2 + y^2 + z^2 = R^2$ with $y \leq 0$, oriented in the negative y direction.

- 3. Let σ be the boundary of the solid bounded by the surfaces $x^2 + y^2 = 4$, z = x + 4, z = -y 4, oriented outward, and $\vec{F} = \langle -yz^2, xz^2, z \rangle$.
 - (a) Using surface integrals, explicitly compute the flux of \vec{F} through σ .

(b) Use the Divergence theorem to compute the flux of \vec{F} through σ .

4. Find the surface area of the portion of $x^2 + y^2 + z^2 = R^2$ above z = a, for any $0 \le a \le R$.