Quiz 5 - Practice

MATH 2400 July 4, 2012

1. Suppose that w = f(u) and that u = x - y. Show that,

(a)
$$\frac{\partial w}{\partial x} = -\frac{\partial w}{\partial y}$$

(b)
$$\frac{\partial^2 w}{\partial x^2} = \frac{\partial^2 w}{\partial y^2} = -\frac{\partial^2 w}{\partial x \partial y}$$

Solution: Notice that $\frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} = \frac{\partial w}{\partial u}$ since $\frac{\partial u}{\partial x} = 1$.

Next, observe that $\frac{\partial w}{\partial y} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial y} = -\frac{\partial w}{\partial u}$ since $\frac{\partial u}{\partial y} = -1$. This establishes (a).

For (b), observe that

$$\frac{\partial^2 w}{\partial x^2} = \frac{\partial^2 w}{\partial u^2} \frac{\partial u}{\partial x} = \frac{\partial^2 w}{\partial u^2} \text{ since } \frac{\partial u}{\partial x} = 1.$$

Also,
$$\frac{\partial^2 w}{\partial y^2} = -\frac{\partial^2 w}{\partial u^2} \frac{\partial u}{\partial y} = \frac{\partial^2 w}{\partial u^2}$$
 since $\frac{\partial u}{\partial y} = -1$.

And,
$$\frac{\partial^2 w}{\partial x \partial y} = -\frac{\partial^2 w}{\partial u^2} \frac{\partial u}{\partial x} = -\frac{\partial^2 w}{\partial u^2}$$
.

- 2. (a) Find the best quadratic approximation of the function cos(xy) for (x, y) near (0, 0).
 - (b) Use this quadratic approximation to find the following limit:

$$\lim_{(x,y)\to(0,0)} \frac{\cos(xy) - 1 - xy}{xy}$$

Solution to (a): The best quadratic approximation for cos(xy) is the function Q(x,y)=1.

Solution to (b): Using the quadratic approximation in part (a),

$$\lim_{(x,y)\to(0,0)} \frac{\cos(xy) - 1 - xy}{xy} = \lim_{(x,y)\to(0,0)} \frac{1 - 1 - xy}{xy} = \lim_{(x,y)\to(0,0)} \frac{-xy}{xy} = -1.$$

3. If the function $u(x,t) = e^{at} \sin(bx)$ satisfies the heat equation $u_t = u_{xx}$, find the relationship between a and b.

Solution: The equation $u_t = u_{xx}$ implies that $e^{at}(a) \sin(bx) = -e^{at} \sin(bx)(b^2)$ is true for all x. If one chooses an x such that $\sin(bx) \neq 0$, then the above equality implies that $a = -b^2$.

4. Decide if the following function is differentiable at (0,0). Explain your reasoning.

$$f(x,y) = |x| + |y|$$

Solution: The above function is not differentiable at (0,0) because we will show that $f_x(0,0)$ does not exist. In particular,

$$f_x(0,0) = \lim_{h\to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h\to 0} \frac{|h|}{h}$$
 which does not exist.