Quiz 3 Solutions

MATH 2400

1. Find the equation of the plane that goes through the origin, and is perpendicular to the planes

$$2x + z = 6$$
$$3x + y - 2z = -57.$$

Let $\vec{n_1} = \langle 2, 0, 1 \rangle$, $\vec{n_2} = \langle 3, 1, -2 \rangle$, which are normal vectors to the two given planes. A plane perpendicular to the two given planes will have a normal vector perpendicular to $\vec{n_1}$ and $\vec{n_2}$, which can be found by the cross product:

$$\vec{n_1} \times \vec{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 1 \\ 3 & 1 & -2 \end{vmatrix} = \langle -1, 7, 2 \rangle.$$

Since the plane goes through the origin, the equation is -x + 7y + 2z = 0.

2. Find a vector \vec{w} that bisects the smaller of the two angles formed by $3\hat{i} - 4\hat{j}$ and $12\hat{i} + 5\hat{j}$.

First, rescale the vectors so that they are unit vectors: $\vec{u} = \left\langle \frac{3}{5}, -\frac{4}{5} \right\rangle$, $\vec{v} = \left\langle \frac{12}{13}, \frac{5}{13} \right\rangle$. Letting $\vec{w} = \vec{u} + \vec{v} = \left\langle \frac{99}{65}, \frac{-27}{65} \right\rangle = \frac{9}{65} \left\langle 11, -3 \right\rangle$, you can see from the isosceles triangle defined be \vec{u} , \vec{v} , \vec{w} , that \vec{w} bisects the angle.

Alternatively, we can start with \vec{w} as an arbitrary vector $\langle a, b \rangle$. Letting θ be the angle between $\vec{u} = \langle 3, -4 \rangle$ and $\vec{v} = \langle 12, 5 \rangle$, \vec{w} must satisfy

$$\frac{\vec{u} \cdot \vec{w}}{||\vec{u}|| \, ||\vec{w}||} = \cos\left(\frac{\theta}{2}\right) = \frac{\vec{v} \cdot \vec{w}}{||\vec{v}|| \, ||\vec{w}||}$$

Substituting into the equation, we can then solve for \vec{w} :

$$\frac{3a - 4b}{5\sqrt{a^2 + b^2}} = \frac{12a + 5b}{13\sqrt{a^2 + b^2}}$$
$$39a - 52b = 60a + 25b$$
$$-21a = 77b$$
$$-\frac{3}{11}a = b$$

So, $\vec{w} = \langle a, -\frac{3}{11}a \rangle = \frac{a}{11} \langle 11, -3 \rangle$, for any a > 0 would bisect the angle.

3. Let $f(x,y) = x^4y^5 - \sin(x^2 + y^2)$. Compute $f_x(x,y)$ and $f_y(x,y)$.

$$f_x(x,y) = 4x^3y^5 - 2x\cos(x^2 + y^2)$$
 $f_y(x,y) = 5x^4y^4 - 2y\cos(x^2 + y^2)$

4. Suppose f(x,y) has the following contour diagram:

Approximate $f_x(3,5)$ and $f_y(3,5)$.

$$f_x(3,5) \approx \frac{f(6,5) - f(3,5)}{\sqrt{(6-3)^2 + (5-5)^2}} = \frac{4-6}{3} = -\frac{2}{3}$$

$$f_y(3,5) \approx \frac{f(3,7) - f(3,5)}{\sqrt{(3-3)^2 + (7-5)^2}} = \frac{8-6}{2} = 1$$