Practice Integrals

Setup the following integrals in all reasonable coordinate systems. Compute each quantity in an appropriate coordinate system.

- 1. The volume the solid bounded by the planes 7x 8y + 2z = 19, 5x y + z = 2, y = 3x + 8, and x = 4.
- 2. The volume between $z = y^2 + 1$ and $z = 9 2x^2 y^2$.
- 3. The mass of the solid that is bounded by the cone $z = \frac{1}{a}\sqrt{x^2 + y^2}$ and the plane z = b, and whose density is proportional to the distance from the z-axis.
- 4. The volume inside $x^2 + y^2 = R^2$ in the first octant, and below z = 3x.
- 5. The volume inside $x^2 + y^2 + z^2 = R^2$ and above $z = x^2 + y^2$.
- 6. The mass of the solid bounded below by $z = \frac{1}{a}\sqrt{x^2 + y^2}$ and above by $x^2 + y^2 + z^2 = R^2$, with density $\delta = 3e^{-(x^2+y^2+z^2)^{\frac{3}{2}}}$.
- 7. The volume inside $x^2 + y^2 + z^2 = 2z$ and below $z = 1 + \sqrt{x^2 + y^2}$.
- 8. The center of mass of the solid bounded by $z = \sqrt{x^2 + y^2}$ and $z = x^2 + y^2$, with density proportional to the distance from the z-axis.
- 9. The volume inside the cylinders $x^2 + z^2 = R^2$ and $y^2 + z^2 = R^2$.
- 10. The volume inside the cylinders $x^2 + z^2 = R^2$, $y^2 + z^2 = R^2$ and $x^2 + y^2 = R^2$.
- 11. The volume between the surfaces xy = 1, xy = 2, xz = 1, xz = 3, yz = 1, yz = 4.
- 12. The volume under $z = \sin(4x^2 + 9y^2)$, above the xy-plane, and inside the elliptical cylinder $4x^2 + 9y^2 = 1$.