Calculus 3 - Summer 2012

Homework #9

Due 8/8/2012

Written Problems

1. Consider the parameterized surface of revolution

$$\sigma: \vec{r}(z,\theta) = \langle r\cos\theta, r\sin\theta, z \rangle, \ 0 \le \theta \le 2\pi, \ 0 \le z \le 10,$$

where $r = 2\cos(2\pi z) + 5$. Find the flux of $\vec{F} = \langle y^2, x^2, z \rangle$ through σ . Hint: You may want to consider adjusting the surface in order to use the divergence theorem.

2. Let $\vec{F} = \left\langle -yz, 4xy^2 - xz, -\frac{1}{3}x^3z^3 \right\rangle$ and C be the intersection of $z = 13 - 2x^2$ and $z = 4x^2 + 6y^2 - 41$, oriented counterclockwise when viewed from above. Evaluate $\oint_C \vec{F} \cdot d\vec{r}$.

Presentation Problems

3. Suppose $\vec{F}=\langle f,g,h\rangle$ is a divergence-free field. That is, div $\vec{F}=0$ everywhere. Define the functions

$$u(y,z) = f(0,y,z)$$

$$h^{x}(x,y,z) = \int_{0}^{x} h(t,y,z) dt$$

$$g^{x}(x,y,z) = \int_{0}^{x} g(t,y,z) dt$$

$$u^{y}(y,z) = \int_{0}^{y} f(0,t,z) dt.$$

Let $\vec{G} = \langle 0, h^x, u^y - g^x \rangle$.

- (a) Show that \vec{G} is a vector potential for \vec{F} . That is, $\operatorname{curl} \vec{G} = \vec{F}$. (Note: You may use the fact that the partial integration defined above commutes with partial differentiation, as long as they are with respect to different variables. That is, $(h^x)_y = (h_y)^x$.)
- (b) Show that if \vec{H} is any other vector potential for \vec{F} , then there exists some function ϕ such that $\vec{H} = \vec{G} + \vec{\nabla} \phi$.
- 4. Let \vec{F} and \vec{G} be vector fields in 3-space such that curl $\vec{F} = \vec{0}$ and div $\vec{G} = 0$ at all points not in a set R. Also, let C be a circle, and σ be a sphere, both not intersecting R. Determine if $\oint_C \vec{F} \cdot d\vec{r}$ and $\iint_{\sigma} \vec{G} \cdot d\vec{S}$ are guaranteed to be 0 if R is a
 - (a) point
 - (b) line
 - (c) plane
 - (d) circle

(e) sphere

Would your answers still be correct if C were an arbitrary simple, closed curve and σ were an arbitrary closed surface?

5. Let σ and C be a surface and boundary curve, as in Stokes' theorem, and let W and τ be a solid with boundary surface, as in divergence theorem. Also, let f and g be functions with continuous second-order partial derivatives, and denote $\vec{\nabla}^2 f = \vec{\nabla} \cdot (\vec{\nabla} f) = f_{xx} + f_{yy} + f_{zz}$. Prove the following identities:

(a)
$$\int_C f \vec{\nabla} g \cdot d\vec{r} = \iint_{\sigma} (\vec{\nabla} f \times \vec{\nabla} g) \cdot d\vec{S}$$

(b)
$$\int_C (f\vec{\nabla}g + g\vec{\nabla}f) \cdot d\vec{r} = 0$$

(c)
$$\iint_{\mathcal{T}} f \vec{\nabla} g \cdot d\vec{S} = \iiint_{W} f \vec{\nabla}^{2} g + \vec{\nabla} f \cdot \vec{\nabla} g \, dV$$

(d)
$$\iint_{\mathcal{T}} (f\vec{\nabla}g - g\vec{\nabla}f) \cdot d\vec{S} = \iiint_{W} f\vec{\nabla}^{2}g - g\vec{\nabla}^{2}f \, dV$$