Calculus 3 - Summer 2012

Homework #6

Due 7/16/2012

Written Problems

- 1. Find the volume of the smaller solid bounded by $x^2 + y^2 + z^2 = R^2$ and $x = \frac{1}{\sqrt{3}}\sqrt{y^2 + z^2}$.
- 2. Find the volume of the tetrahedron bounded by planes

$$3x + 4y + z = 11$$
 $y = x + 2$
 $x + 5y + z = 7$ $y = -x - 6$

by transforming it into the tetrahedron bounded by

$$\frac{u}{a} + \frac{v}{b} + \frac{w}{c} = 1, u = 0, v = 0, w = 0$$

and using the fact that the volume of the new tetrahedron is $\frac{|abc|}{3!}$.

3. Compute $\frac{\partial(x,y,z)}{\partial(\rho,\phi,\theta)}$ for $(x,y,z)=(\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,\rho\cos\phi)$.

Presentation Problems

- 4. (a) Find the average value of r over the cylinder $x^2 + y^2 \le R^2$, $0 \le z \le H$.
 - (b) Find the average value of ρ over the sphere $x^2 + y^2 + z^2 \le R^2$.
- 5. Evaluate: $\int_0^2 \int_{\frac{y}{2}}^{\frac{y+4}{2}} y^3 (2x y) e^{(2x-y)^2} dx dy.$
- 6. Find the volume between $z = 13 2x^2$ and $z = 4x^2 + 6y^2 41$.