Calculus 3 - Summer 2012
Homework #4
Due 7/2/2012

Written Problems

1. Consider the change of variables from rectangular to polar coordinates: (z,y) = (rcosf,rsin@).

(a) Show that for any differentiable function w = f(z,y),
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(b) Show that for any differentiable function z = f(z,y),
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(c¢) Show that for any differentiable function z = f(x,y),
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2. Consider the function
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(a) Show that f(z,y) is differentiable at (0,0).
(b) Using the limit definition of partial derivatives, show that f,,(0,0) # f,.(0,0).

Presentation Problems

3. For any positive integer p, a function f(z,y, z) is called homogeneous of order p if for any real
number ¢, f satisfies

f(tx, ty, tz) =t f(x,y, 2).

Show that if f is a homogeneous function of order p, then
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4. Let f(x,y) be differentiable. Carefully show that
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5. (a) Find the quadratic approximation of f(z,y) = e *“**¥") at (0,0).
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