Calculus 3 - Summer 2012

Homework #3

Due 6/25/2012

Written Problems

- 1. Use the limit definition of the partial derivatives to find $f_x(3,2)$ and $f_y(3,2)$ for the function $f(x,y) = \frac{x^2}{y+1}$.
- 2. Let f(x,y) be a function of two variables.
 - (a) If $f_x(a,b)$ or $f_y(a,b)$ is non-zero, use local linearization to show that an equation of the line tangent to the contour of f at (a,b) is $f_x(a,b)(x-a) + f_y(a,b)(y-b) = 0$.
 - (b) Find the slope of the tangent line if $f_u(a,b) \neq 0$.
 - (c) Find an equation for the tangent line to the contour of $f(x,y) = x^2 + xy$ at (3,4).
- 3. Let f be a differentiable function of one variable. Show that all tangent planes to the surface $z = xf\left(\frac{y}{x}\right)$ intersect at a common point.

Presentation Problems

- 4. Define $f(x,y) = \left(\int_3^x e^{t^2} dt\right) y$. Find the directional derivative of f at the point (3,1) in the direction of the vector $\vec{v} = (2,3)$.
- 5. Let k > 0. Show that the volume in the first octant, bounded by the coordinate planes and any tangent plane of xyz = k, x, y > 0 depends only on k. (Hint: For a, b, c > 0, the volume in the first octant under the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ is $\frac{abc}{3!}$.)
- 6. (a) Let z = f(x, y) and z = g(x, y) be differentiable surfaces. Show that if $\nabla f \cdot \nabla g = -1$ at a point of intersection, then the surfaces are perpendicular at that point.
 - (b) Show that the surfaces $z = \frac{1}{2}(x^2 + y^2 1)$ and $z = \frac{1}{2}(1 x^2 y^2)$ are perpendicular at all points of intersection.