
MATH 2400

Final Exam Review Solutions

1. Find an equation for the collection of points that are equidistant toA(−1, 5, 3) andB(6, 2, −2).

∣∣∣∣∣∣−→AP ∣∣∣∣∣∣2 =
∣∣∣∣∣∣−−→BP ∣∣∣∣∣∣2

(x+ 1)2 + (y − 5)2 + (z − 3)2 = (x− 6)2 + (y − 2)2 + (z + 2)2

x2 + 2x+ 1 + y2 − 10y + 25 + z2 − 6z + 9 = x2 − 12x+ 36 + y2 − 4y + 4 + z2 + 4z + 4

14x− 6y − 10z = 9.

Alternatively, this is the plane with normal vector
−→
AB through the midpoint of A and B.

2. Using a computer, graph a contour plot of f(x, y) = x2y−x3 and some flow lines of the vector

field ~F =
〈
1, 3− 2 y

x

〉
. What appears to be true? Prove your conjecture.

Note that it appears that every flow line lies on a level curve. That is, for any flow line C,
given by ~r(t), we have that f(~r(t)) ≡ k for some constant k. Note that on C

d

dt
(f(~r(t))) = ~∇f · ~r′

= ~∇f · ~F

=
〈
2xy − 3x2, x2

〉
·
〈

1, 3− 2
y

x

〉
= 0.

Thus, f is constant on any flow line. Therefore, every flow line lies on a level curve. However,
note that x = 0 is a level cure of f , but the vector field is not defined on the entire line. So,
not every level curve is a flow line.



Alternatively, we can solve the differential equation

dy

dx
=

dy
dt
dx
dt

=
3− 2 y

x

1

dy

dx
+

2

x
y = 3

x2
dy

dx
+ 2xy = 3x2

d

dx

(
x2y
)

= 3x2

x2y = x3 + k

f(x, y) = x2y − x3 = k.

3. Find an equation of the plane through the points (2, 4,−1
2
), (−1, 2,−5

2
), and (0, 1,−3

2
).

If we compute the vectors between successive points, we get ~v1 = 〈−3,−2,−2〉 , ~v2 = 〈1,−1, 1〉 .
Then

~v1 × ~v2 =

∣∣∣∣∣∣
î ĵ ĵ
−3 −2 −2
1 −1 1

∣∣∣∣∣∣ = 〈−4, 1, 5〉

So, one form of the plane would be −4x+ (y − 1) + 5

(
z +

3

2

)
= 0.

4. For each of the following limits, calculate the limit if it exits, otherwise show the limit does
not exist.

(a) lim
(x,y)→(0,0)

x2 sin2 y

x2 + 2y2

0 ≤ lim
(x,y)→(0,0)

x2 sin2 y

x2 + 2y2
= lim

(x,y)→(0,0)

sin2 y

y2
· lim
(x,y)→(0,0)

x2y2

x2 + 2y2
= 1 · lim

r→0

r4 cos2 θ sin2 θ

r2 cos2 θ + 2r2 sin2 θ

= lim
r→0

r2
cos2 θ sin2 θ

1 + sin2 θ
≤ lim

r→0
r2

1 · sin2 θ

1 + sin2 θ
≤ lim

r→0
r2 · 1 = 0.

Thus, lim
(x,y)→(0,0)

x2 sin2 y

x2 + 2y2
= 0.

(b) lim
(x,y)→(0,0)

xy3

x2 + y6

y = 0 : lim
(x,y)→(0,0)

xy3

x2 + y6
= lim

(x,0)→(0,0)

x · 03

x2 + 06
= lim

x→0

0

x2
= lim

x→0
0 = 0

x = y3 : lim
(x,y)→(0,0)

xy3

x2 + y6
= lim

(y3,y)→(0,0)

y3 · y3

(y3)2 + y6
= lim

y→0

y6

2y6
= lim

y→0

1

2
=

1

2
6= 0.

Thus, lim
(x,y)→(0,0)

xy3

x2 + y6
does not exist.

(c) lim
(x,y,z)→(0,0,0)

xyz

x2 + y2 + z2

0 ≤
∣∣∣∣ lim
(x,y,z)→(0,0,0)

xyz

x2 + y2 + z2

∣∣∣∣ = lim
ρ→0

∣∣∣∣ρ3 cos θ sin θ sin2 φ cosφ

ρ2

∣∣∣∣ ≤ lim
ρ→0

ρ = 0

Thus, lim
(x,y,z)→(0,0,0)

xyz

x2 + y2 + z2
= 0.



5. Two tugs are pulling a boat, one pulling in the direction 60◦ North of East and is half as
strong as the other tug. In what direction should the stronger tug pull in order for the boat
to move due East? If the weaker tug is pulling with a force of 10 N, what is the net force
acting on the boat?

The weaker tug is pulling with a force of 10 sin(60◦) = 5
√

3 N in the North direction. If the
stronger tug is pulling at an angle θ South of East, it will be pulling with a force of 20 sin θ N
in the South direction. Since we need the boat to travel due East, we have 20 sin θ = 5

√
3, and

so, θ = sin−1

(√
3

4

)
≈ 25.66◦. Then, the net force acting on the boat, which is the combined

horizontal forces of the tugs, would be

10 cos(60◦) + 20 cos

(
sin−1

(√
3

4

))
= 10

(
1

2

)
+ 20

(√
13

4

)
= 5(
√

13 + 1) ≈ 23.0277 N.

6. Find the acute angle between two diagonals of a cube.

The four vectors along the diagonals are 〈1, 1, 1〉 , 〈−1, 1, 1〉 , 〈−1,−1, 1〉 , 〈1,−1, 1〉 . Note that
the dot product between any two of these vectors would be ±1, and the length of each vector

is
√

3. So, the acute angle measurement is cos−1
(

1√
3
2

)
= cos−1

(
1
3

)
.

7. Let f(x, y) =
xesin(x

2y)

(x2 + y2)3/2
. Compute fx(1, 0). Note: There is an easy way.

Let g(x) = f(x, 0) =
xe0

(x2 + 02)
3
2

=
1

x2
. So, fx(1, 0) = g′(1) =

−2

x3

∣∣∣∣
x=1

= −2.

8. Find the tangent plane to the following surfaces at the given point:

(a) z = e2y−x sin y at (3π, 3π
2
,−1).

~∇z =
〈
−e2y−x sin y, 2e2y−x sin y + e2y−x cos y

〉
~∇z
(

3π,
3π

2

)
= e0 〈−(−1), 2 + 0〉 = 〈1,−2〉

So, the tangent plane is z = 1 · (x− 3π)− 2
(
y − 3π

2

)
− 1 = x− 2y − 1.

(b) ~r(u, v) = 〈u2, u− v2, v2〉 at (x, y, z) = (1,−2, 1).

A plane is defined by a normal vector and a point. Recall ~ru and ~rv are tangent to
the surface, and so, ~ru × ~rv is perpendicular to the surface. Note ~ru = 〈2u, 1, 0〉 , ~rv =
〈0,−2v, 2v〉 = 2v 〈0,−1, 1〉 , and so, ~ru×~rv = 2v 〈1,−2u,−2u〉 . Now, how does (x, y, z) =
(1,−2, 1) correspond to (u, v)? x = z = 1 gives us u2 = v2 = 1, and so u = ±1, v = ±1.
Also, −2 = y = u− v2 = u− 1, which gives us u = −1. So, a normal vector is 〈1, 2, 2〉 ,
giving us a tangent plane (x− 1) + 2(y + 2) + 2(z − 1) = 0, or x+ 2y + 2z = −1.

9. Two legs of a right triangle are measured at 8cm and 15cm, each with a maximum error of
0.2cm. Estimate the maximum error in computing the area and the hypotenuse.



A =
1

2
xy

dA =
1

2
y dx+

1

2
x dy = A ·

(
dx

x
+
dy

y

)
|∆A| ≈

∣∣∣∣A(∆x

x
+

∆y

y

)∣∣∣∣ ≤ A

(
|∆x|
x

+
|∆y|
y

)
≤ 1

2
(8)(15)

(
.2

8
+
.2

15

)
= 2.3 cm2

H =
√
x2 + y2

dH =
x√

x2 + y2
dx+

y√
x2 + y2

dy =
1

H
(x dx+ y dy)

|∆H| ≈
∣∣∣∣ 1

H
(x∆x+ y∆y)

∣∣∣∣ ≤ 1

H
(x |∆x|+ y |∆y|) =

1

17
(8(.2) + 15(.2)) =

46

170
≈ .2706 cm.

10. Parameterize the line that is tangent to z = x2 + y2 and 4x2 + y2 + z2 = 9 at the point
(−1, 1, 2).

Recall that the 3D-gradient of a surface gives a vector perpendicular to the surface. If we
cross the two gradients, we will get a vector that is perpendicular to both gradients, and so,
tangent to both surfaces. The line starting at our point, pointing along the vector, will be the
line we want.

~∇(x2 + y2 − z) = 〈2x, 2y,−1〉 7→ 〈−2, 2,−1〉
~∇(4x2 + y2 + z2 − 9) = 〈8x, 2y, 2z〉 7→ 〈−8, 2, 4〉 = 2 〈4,−1,−2〉

〈−2, 2,−1〉 × 〈4,−1,−2〉 = 〈−5,−8,−6〉
~r(t) = 〈−1, 1, 2〉+ t 〈5, 8, 6〉 .

11. Calculate ∂z
∂x

and ∂z
∂y

for

(a) the surface defined by x2 + z sin(xyz) = 0.

0 = d(0) = d
(
x2 + z sin (xyz)

)
= 2x dx+ sin(xyz) dz + z cos(xyz) (yz dx+ xz dy + xy dz)

(− sin(xyz)− xyz cos(xyz)) dz =
(
2x+ yz2 cos(xyz)

)
dx+ xz2 cos(xyz) dy

dz =
∂z

∂x
dx+

∂z

∂y
dy = − 2x+ yz2 cos(xyz)

sin(xyz) + xyz cos(xyz)
dx− xz2 cos(xyz)

sin(xyz) + xyz cos(xyz)
dy

(b) z =

∫ xy2

0

et
2

dt.

∂z

∂x
= e(xy

2)
2

· y2 ∂z

∂y
= e(xy

2)
2

· 2xy

12. A function f(x, y) is called homogeneous of degree n if for every t > 0, f(tx, ty) = tnf(x, y).

Show that if f(x, y) is homogeneous of degree n, then x
∂f

∂x
+ y

∂f

∂y
= nf.

tnf(x, y) = f(tx, ty)

d

dt
(tnf(x, y)) =

d

dt
(f(tx, ty))

ntn−1f(x, y) = fx(tx, ty) · x+ fy(tx, ty) · y
t = 1 : nf(x, y) = fx(x, y) · x+ fy(x, y) · y.



13. Let z = f(x2 + ln y). Calculate
∂2z

∂x2
,
∂2z

∂y2
, and

∂2z

∂x∂y
.

zx = 2xf ′
(
x2 + ln y

)
zxx = 2f ′

(
x2 + ln y

)
+ 4x2f ′′

(
x2 + ln y

)
zy =

1

y
f ′
(
x2 + ln y

)
zyy =

−1

y2
f ′
(
x2 + ln y

)
+

1

y2
f ′′
(
x2 + ln y

)
zyx = zxy =

2x

y
f ′′
(
x2 + ln y

)
14. Compute the Taylor series centered at (0,0) of f(x, y) =

1

1− x2 − y2
. What is the radius of

convergence, and on what set does the series converge?

1

1− x2 − y2
=

1

1− (x2 + y2)
=
∞∑
n=0

(
x2 + y2

)n
The series will converge where

∣∣x2 + y2
∣∣ = x2 + y2 < 1. This is the open disk of radius 1,

centered at the origin. Note: You should now be more comfortable with the terminology
”radius of convergence.”

15. Let f(x, y) =

{
xy√
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
. Is f continuous? Differentiable?

Note that away from the origin, f is a quotient of functions that are differentiable, hence, f
is differentiable except possibly at (0,0).

0 ≤
∣∣∣∣ lim
(x,y)→(0,0)

f(x, y)

∣∣∣∣ = lim
r→0

∣∣∣∣r2 cos θ sin θ

r

∣∣∣∣ = lim
r→0

r |cos θ sin θ| ≤ lim
r→0

r = 0 = f(0, 0).

So, f is continuous at (0,0).

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

h·0√
h2+02

− 0

h
= lim

h→0

0

h
= lim

h→0
0 = 0.

Similarly, fy(0, 0) = 0. So, the best linear approximation to f at (0,0) is L(x, y) = 0(x− 0) +
0(y − 0) + 0 = 0. So, E(x, y) = f(x, y)− L(x, y) = f(x, y).

lim
(x,y)→(0,0)

E(x, y)√
x2 + y2

= lim
(x,y)→(0,0)

xy

x2 + y2
= lim

r→0

r2 cos θ sin θ

r2
= lim

r→0
cos θ sin θ = cos θ sin θ =

θ=π
4

1

2
6= 0.

Thus, f is not differentiable at (0,0).

16. Find and classify all critical points of f(x, y) =
4

3
x3 − xy2 + y.

fx = 4x2 − y2 = 0 fy = −2xy + 1 ⇒
(
±1

2
,±1

)
fxx = 8x fxy = −2y fyy = −2x

D(x, y) = (8x)(−2x)− (−2y)2 = −16x2 − 4y2 < 0 for (x, y) 6= (0, 0)

So,
(
±1

2
,±1

)
are saddle points.



17. Find the absolute max/min of f(x, y) = x2 + 2y2 − x over the disk x2 + y2 ≤ 4.

Note that f is a continuous function, restricted to a compact set. So, we are guaranteed that
f will attain a global max and min on the closed disk. Furthermore, they must occur at either
critical points on the interior, or on the boundary.

Interior:

fx = 2x− 1 = 0 fy = 4y = 0⇒
(

1

2
, 0

)
We shall apply the method of Lagrange multipliers to the boundary.

〈2x− 1, 4y〉 = λ 〈2x, 2y〉
2x− 1

2x
= λ =

4y

2y

y = 0⇒ x = ±2

y 6= 0⇒ 2x− 1

2x
= 2

2x− 1 = 4x

x = −1

2
⇒ y = ±

√
4−

(
−1

2

)2

= ±
√

15

2

f

(
1

2
, 0

)
= −1

4
< f(2, 0) = 2 < f(−2, 0) = 6 < f

(
−1

2
,±
√

15

2

)
=

33

4

18. (Challenging!) Consider the ellipsoid
x2

9
+
y2

4
+
z2

25
= 1 with a point P on the surface in

the first octant (specifically, where each coordinate is greater than zero). Then the coordinate
planes and the tangent plane at P define a tetrahedron in the first octant. Find the point P
that will minimize the volume of the resulting tetrahedron.

First, an outline of the solution. We will find the tangent plane at an arbitrary point, and find
the volume of the resulting tetrahedron. This then defines a volume function, dependent on
the base point. From there, we will apply the method of Lagrange multipliers to the volume
function in order to find the minimum.

Consider the point P (a, b, c) with a, b, c > 0. Since ~∇
(
x2

9
+
y2

4
+
z2

25

)
=

〈
2

9
x,

2

4
y,

2

25
z

〉
, we

have that the tangent plane to the surface at P is

0 =
2

9
a(x− a) +

2

4
b(y − b) 2

25
c(z − c)

= 2

[
a

9
x+

b

4
y +

c

25
z −

(
a2

9
+
b2

4
+
c2

25

)]
1 =

x
9
a

+
y
4
b

+
z
25
c

Recall: For a, b, c > 0, the volume in the first octant under the plane
x

a
+
y

b
+
z

c
= 1 is

abc

6
.

So, the volume of our tetrahedron is
9
a
· 4
b
· 25
c

6
=

150

abc
. Thus, for any point P (x, y, z) satisfying

x2

9
+
y2

4
+
z2

25
= 1 and x, y, z > 0, the volume of the resulting tetrahedron is V (x, y, z) =

150

xyz
.



Notice that we are not working over a closed set, however, as x, y or z approach 0, that volume
approaches infinity. So, if we restrict the value to say x2

9
+ y2

4
+ z2

25
= 1 and x, y, z ≥ .001

we are only removing points with a corresponding larger volume, and so, will not change
the minimum (should it exist). However, V is continuous on our new set, which is compact.
So, we are guaranteed a minimum on that set. To find the minimum, we shall proceed by
Lagrange multipliers.

~∇V (x, y, z) = λ~∇
(
x2

9
+
y2

4
+
z2

25

)
−V

〈
1

x
,

1

y
,
1

z

〉
= 2λ

〈x
9
,
y

4
,
z

25

〉
− V

2λ
=
x2

9
=
y2

4
=
z2

25

Substituting into our constraint, we get

3 · x
2

9
= 1⇒ x =

3√
3
⇒ P (x, y, z) =

(
3√
3
,

2√
3
,

5√
3

)
.

19. Evaluate the following integrals:

(a)

∫ 16

0

∫ 4

√
y

ex
3

dx dy

∫ 16

0

∫ 4

√
y

ex
3

dx dy =

∫ 4

0

∫ x2

0

ex
3

dy dx =

∫ 4

0

x2ex
3

dx =

[
1

3
ex

3

]4
0

=
e64 − 1

3
.

(b)

∫∫
R

y dA where R is the region in the first quadrant bounded by xy = 16, y = x and

x = 4. ∫ 8

4

∫ x

16
x

y dy dx =

∫ 8

4

1

2
x2 − 27

x2
dx =

176

3
.

(c)

∫∫∫
G

z dV, where G is the solid in the first octant bounded by x+ y = 2 and y2 + z2 = 4.

∫ π
2

0

∫ 2

0

∫ 2−r sin θ

0

r cos θ · r dx dr dθ =

∫ π
2

0

∫ 2

0

r2 cos θ (2− r sin θ) dr dθ

=

∫ π
2

0

16

3
cos θ − 4 sin θ cos θ dθ =

10

3
.

(d)

∫∫
R

sin(x− y)

cos(x+ y)
dA where R is the region bounded by y = 0, y = x, and x+ y = π

4
.

x = u+ v y = v − u


y = 0
y = x

x+ y = π
4

 7→


u = v
u = 0
v = π

4

 ∂(x, y)

∂(u, v)
=

∣∣∣∣ 1 1
−1 1

∣∣∣∣ = 2



∫∫
R

sin(x− y)

cos(x+ y)
dA =

∫ π
4

0

∫ v

0

sinu

cos v
2 du dv = 2

∫ π
4

0

1− 1

cos v
dv =

π

2
− 2 ln(

√
2 + 1).

(e)

∫ 1√
2

0

∫ √4−x2
√
1−x2

√
x2 + y2 dy dx+

∫ √2
1√
2

∫ √4−x2
x

√
x2 + y2 dy dx.

=

∫ π
2

π
4

∫ 2

1

√
r2r dr dθ =

14

3
π.

(f)

∫ √ 3
2

0

∫ √2−x2
1√
3
x

∫ √4−x2−y2

√
x2+y2

(x2 + y2 + z2)3 dz dy dx.

=

∫ π
2

π
6

∫ π
4

0

∫ 2

0

(
ρ2
)3
ρ2 sinφ dρ dφ dθ =

(π
2
− π

6

)
[− cosφ]

π
4
0

[
1

9
ρ9
]2
0

=
512π

27

(
2−
√

2
)
.

20. (Hard) Three identical cylinders with radii R intersect at the same point at right angles.
Find the volume of their intersection.

Consider the cylinders x2 + y2 = R2, x2 + z2 = R2, y2 + z2 = R2. Using symmetry, we can
restrict out attention to z ≥ 0, x ≥ y ≥ 0, giving us

16

∫∫
0≤y≤x≤R
x2+y2≤R2

√
R2 − x2 dA = 16

∫ π
4

0

∫ R

0

r
√
R2 − r2 cos2 θ dr dθ

= 16

∫ π
4

0

[
− 1

3 cos2 θ

(
R2 − r2 cos2 θ

) 3
2

]R
0

dθ

= 16

∫ π
4

0

− 1

3 cos2 θ
R3 sin3 θ +

R3

3 cos2 θ
dθ

=
16

3
R3

∫ π
4

0

(
sec2−1− cos2 θ

cos2 θ
sin θ

)
dθ

=
16

3
R3

∫ π
4

0

(
sec2 θ − sin θ

cos2 θ
+ sin θ

)
dθ

=
16

3
R3

[
tan θ − 1

cos θ
− cos θ

]π
4

0

=
16

3
R3

(
1−
√

2−
√

2

2
− 0 + 1 + 1

)

=
16

3
R3

(
3− 3

2

√
2

)
= 8R3

(
2−
√

2
)
.

21. Find the surface area of the portion of the cylinder x2 +y2 = 9 above the xy-plane, and below
x+ y + 3z = 20.



~r(θ, z) = 〈3 cos θ, 3 sin θ, z〉
~rθ = 〈−3 sin θ, 3 cos θ, 0〉 ~rz = 〈0, 0, 1〉

||~rθ × ~rz|| = ||〈3 cos θ, 3 sin θ, 0〉|| =
√

9 cos2 θ + 9 sin2 θ + 0 = 3∫∫
S

dS =

∫ 2π

0

∫ 1
3
(20−3 cos θ−3 sin θ)

0

3 dz dθ

=

∫ 2π

0

20− 3 cos θ − 3 sin θ dθ

= 40π.

For the following problems, all closed curves are oriented counterclockwise when viewed from
above, and surfaces are oriented outward/upward unless other wise stated.

22.

∫
C

x2 dx+ xy dy + z2 dz, C : ~r(t) =
〈
sin t, cos t, t2

〉
, 0 ≤ t ≤ π.

∫
C

x2 dx+ xy dy + z2 dz =

∫ π

0

sin2 t · cos t+ sin t cos t(− sin t) + (t2)2(2t) dt =

∫ π

0

2t5 dt =
π6

3
.

23.

∫
C

2xz cos(x2z) dx+z dy+
(
x2 cos(x2z) + y

)
dz, where C is the intersection of z = 3x2+y3+5

and y = x3 − 3 from x = 0 to x = 1.

∫
C

2xz cos(x2z) dx+ z dy +
(
x2 cos(x2z) + y

)
dz

=

∫ (1,−2,0)

(0,−3,−22)

~∇
(
yz + sin(x2z)

)
· d~r

= (−2)(0) + sin(0)− (−3)(−22)− sin(0) = −66.

24.

∮
C

(x + y2) dx + (1 + x2) dy where C is the boundary of the region enclosed by y = x2 and

y = x3.

∫
C

(x+ y2) dx+ (1 + x2) dy =
Green’s

∫ 1

0

∫ x2

x3
(2x− 2y) dy dx

=

∫ 1

0

2x3 − x4 − 2x4 + x6 dx =
3

70
.

25.

∮
C

〈
x2y,

1

3
x3, xy

〉
· d~r where C is the intersection of z = y2 − x2 and x2 + y2 = 1.

Let S be the surface z = y2 − x2 over x2 + y2 ≤ 1, which will have boundary curve C.



∮
C

〈
x2y,

1

3
x3, xy

〉
· d~r =

Stokes’

∫∫
S

curl

〈
x2y,

1

3
x3, xy

〉
· d~S

=

∫∫
x2+y2≤1

〈x,−y, 0〉 · 〈2x,−2y, 1〉 dA

=

∫ 2π

0

∫ 1

0

2r2 · r dr dθ = π.

26.

∮
C

〈xy, yz, zx〉 · d~r where C is the triangle (1,0,0), (0,1,0), (0,0,1).

Let S be the flat interior of C, given by x+ y + z = 1, 0 ≤ y ≤ 1− x ≤ 1.

∮
C

〈xy, yz, zx〉 · d~r =
Stokes’

∫∫
S

curl 〈xy, yz, zx〉 · d~S

=

∫∫
R

〈−y,−z,−x〉 · 〈1, 1, 1〉 dA

=

∫∫
R

− (x+ y + z) dA

= −1 ·
∫∫
R

dA = −1

2

27.

∮
C

〈
x, y, x2 + y2

〉
·d~r where C is the boundary of the portion of the paraboloid z = 1−x2−y2

in the first octant.

Let S be the portion of z = 1− x2 − y2 inside C.

∮
C

〈
x, y, x2 + y2

〉
· d~r =

Stokes’

∫∫
S

curl
〈
x, y, x2 + y2

〉
· d~S

=

∫∫
R

〈2y,−2x, 0〉 · 〈2x, 2y, 1〉 dA

=

∫∫
R

0 dA = 0

28.

∫∫
S

curl
〈
x sin2 z, 3x, z + tan−1(xy)

〉
· d~S where S is the portion of z =

√
9− x2 − y2 inside

x2 + y2 = 4.

By either applying Stokes’ twice or divergence theorem, any surface with same orientation
and boundary as S will have the same surface integral over a curl field. Let S ′ be the disk
z =
√

5 with x2 + y2 ≤ 4.



∫∫
S

curl
〈
x sin2 z, 3x, z + tan−1(xy)

〉
· d~S =

Divergence

∫∫
S′

curl
〈
x sin2 z, 3x, z + tan−1(xy)

〉
· d~S

=

∫∫
x2+y2≤4

〈
x

1 + x2y2
,
−y

1 + x2y2
, 3

〉
· 〈0, 0, 1〉 dA

= 3

∫∫
x2+y2≤4

dA = 12π.

29.

∫∫
S

curl
〈
x2eyz, y2exz, z2exy

〉
· d~S where S is the top half of the sphere x2 + y2 + z2 = a2.

Note that S ′, the disk z = 0 with x2 + y2 ≤ a2, has the same boundary curve as S.

∫∫
S

curl
〈
x2eyz, y2exz, z2exy

〉
· d~S =

Divergence

∫∫
S′

curl
〈
x2eyz, y2exz, z2exy

〉
· d~S

=

∫∫
x2+y2≤a2

curl
〈
x2eyz, y2exz, z2exy

〉
· 〈0, 0, 1〉 dA

=

∫∫
x2+y2≤a2

z
(
y2exz − x2eyz

)
dA

=

∫∫
x2+y2≤a2

0 ·
(
y2e0 − x2e0

)
dA

=

∫∫
x2+y2≤a2

0 dA = 0.

30. Find the flux of ~F through the surface S.

(a) ~F = 〈xzey,−xzey, z〉 , S is the portion of x + y + z = 1 in the first octant, oriented
downward.

∫∫
S

~F ·d~S =

∫ 1

0

∫ 1−x

0

〈xzey,−xzey, z〉·〈−1,−1,−1〉 dy dx =

∫ 1

0

∫ 1−x

0

−xzey+xzey−z dy dx

=

∫ 1

0

∫ 1−x

0

−1 + x+ y dy dx =

∫ 1

0

−(1− x)2 +
1

2
(1− x)2 dx = −1

6
.

(b) ~F = 〈x, y, z〉 , S is the upper half of the sphere x2 + y2 + z2 = a2.∫∫
S

~F · d~S =

∫∫
S

~r · ~r

||~r||
dS =

∫∫
S

||~r|| dS =

∫∫
S

a dS = a · 1

2
· 4πa2 = 2πa3.

(c) ~F =
〈
3x, xz, z2

〉
, S is the boundary of the solid bounded by z = 4− x2 − y2 and z = 0.



∫∫
S

~F · d~S =
Divergence

∫∫
x2+y2≤4

∫ 4−x2−y2

0

div~F dz dA

=

∫ 2π

0

∫ 2

0

∫ 4−r2

0

(3 + 2z)r dz dr dθ

= 2π

∫ 2

0

r
(
3(4− r2) + (4− r2)2

)
dr

=
136

3
π.

(d) ~F =
〈
x2 + sin(yz), y − xe−z, z2

〉
, S is the boundary of the solid bounded by x2 + y2 =

4, x+ z = 2 and z = 0.

∫∫
S

~F · d~S =
Divergence

∫∫
x2+y2≤4

∫ 2−x

0

2x+ 1 + 2z dz dA

=

∫∫
x2+y2≤4

(2x+ 1)(2− x) + (2− x)2 dA

=

∫∫
x2+y2≤4

− x2 − x+ 6 dA

=

∫ 2π

0

∫ 2

0

−r3 cos2 θ − r2 cos θ + 6r dr dθ

=

∫ 2π

0

−4 cos2 θ − 8

3
cos θ + 12 dθ

= 20π.

(e) ~F = 〈2, 5, 3〉 , S is the portion of the cone z =
√
x2 + y2 inside x2 + y2 = 1. What if S

were instead the portion of z = x2 + y2 inside x2 + y2 = 1?

Notice that the cone and the paraboloid can both be continuously deformed to the disk,
S ′ : z = 1, x2 + y2 ≤ 1 and div~F = 0, so the flux through all three surfaces will be equal.∫∫

S′

~F · d~S =

∫∫
x2+y2≤1

〈2, 5, 3〉 · 〈0, 0, 1〉 dA = 3

∫∫
x2+y2≤1

dA = 3π.

31. For each of the following, determine if the statement is true or false. If true, make sure you
can prove it or explain why. if false, give a counterexample.

(a) For every pair of differentiable functions of one variable, f and g, the line integral∫
C

f(x) dx+ g(y) dy is path independent.

Since f and g are differentiable, they have antiderivatives, F,G. Since ~∇ (F (x) +G(y)) =

〈f(x), g(y)〉 , then

∫
C

f(x) dx+ g(y) dy is path independent.

(b) ~F =
〈
xy2, x2z

〉
is an example of a vector field.

~F =
〈
xy2, x2z

〉
has three inputs, but only two outputs, and so, ~F cannot be a vector

field.



(c)

∫
C

x

x2 + y2
dx− y

x2 + y2
dy is path independent.

curl

〈
x

x2 + y2
,
−y

x2 + y2
, 0

〉
=

〈
0, 0,

−2xy

(x2 + y2)2
− 2xy

(x2 + y2)2

〉
6= ~0.

So,

〈
x

x2 + y2
,
−y

x2 + y2

〉
is not conservative. Thus,

∫
C

x

x2 + y2
dx− y

x2 + y2
dy is not path

independent.

(d) If

∮
C

~F · d~r = 0 for a simple closed curve C, then ~F is conservative.

Consider ~F = 〈0, 0, 1− x2 − y2〉 . Then curl~F = 〈−2y, 2x, 0〉 6= ~0, so ~F is not conserva-
tive. However, for C : ~r(t) = 〈cos θ, sin θ, 0〉 , 0 ≤ t ≤ 2π, a simple closed curve,∮

C

~F · d~r =

∫ 2π

0

~F (~r(t)) · ~r′(t) dt =

∫ 2π

0

~0 · ~r′(t) dt = 0.

(e) If ∇2f = ∇ · ∇f ≡ 0 then
∫
C
fy dx− fx dy is path independent.

Let C be a simple closed curve.

∫
C

fy dx− fx dy =
Green’s

∫∫
R

∂

∂x
(−fx)−

∂

∂y
(fy) dA

= −
∫∫

R

fxx + fyy dA

= −
∫∫

R

∇2f dA

= −
∫∫

R

0 dA

= 0.

(f) There is a vector field ~F such that curl~F = 〈2x, 3yz,−xz2〉.
Recall that for any vector field ~F , div(curl~F ) = 0. Since div 〈2x, 3yz,−xz2〉 = 2+3z+x 6=
0, then 〈2x, 3yz,−xz2〉 is not the curl of any vector field.


