Exam 4 Review

Unless otherwise stated, all curves are oriented counterclockwise when viewed from above, and surfaces are oriented upward/outward.

- 1. $\int_C x \, ds$, $C = \langle t, t^2 \rangle$, $0 \le t \le 2$.
- 2. $\int_C x \sin y \, dx + 3xyz \, dz$, $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$, $o \le t \le \sqrt{\pi}$.
- 3. $\int_C (x+y^2) dx + (1+x^2) dy$ where C is the boundary of the region enclosed by $y=x^2$, $y=x^3$.
- 4. $\oint \langle x^2y, \frac{1}{3}x^3, xy \rangle \cdot d\mathbf{r}$ where C is the intersection of $z = y^2 x^2$ and $x^2 + y^2 = 1$.
- 5. $\iint (y^2 + z^2) dS$ where σ is the portion of $x = 4 y^2 z^2$ with $x \ge 0$.
- 6. $\int_C (y^2 + 2xy) dx + (x^2 + 2xy) dy$ where C is the line segment from (-1,2) to (3,1).
- 7. $\iint_{\sigma} (\operatorname{curl} \langle x \sin^2 z, 3x, z + \tan^{-1}(xy) \rangle) \cdot \boldsymbol{n} \, dS, \, \sigma \text{ is the portion of } z = \sqrt{9 x^2 y^2} \text{ inside } x^2 + y^2 = 4.$
- 8. $\phi \langle xy, yz, zx \rangle \cdot d\mathbf{r}$ where C is the triangle (1,0,0), (0,1,0), (0,0,1).
- 9. $\int_C xy^4 ds$. $C: x^2 + y^2 = 9$, $x \ge 0$.
- 10. $\iint_{\sigma} (\operatorname{curl} \langle yz, xz, xy \rangle) \cdot \boldsymbol{n} \, dS$, σ is the portion of $z = 9 x^2 + y^2$ above z = 5.
- 11. $\int_C e^y dx + 2xe^y dy$ where C is the unit square.
- 12. $\iint_{\sigma} yz \, dS$ where σ is the portion of the plane x + y + z = 1 in the first octant.
- 13. $\int_C 7xy \, dx + 5x^2y^3 \, dy$ where C is $x = y^3$ from (1,1) to (0,0).
- 14. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using Green's Theorem.
- 15. Find the area of the region enclosed by the curve defined by $r(t) = \langle 2\cos^3 t, 2\sin^3 t \rangle$, $0 \le t \le 2\pi$.
- 16. In each example, find the flux of the vector field F through the surface σ :
 - (a) $\mathbf{F} = \langle 3x, xz, z^2 \rangle$, σ is the surface of the region bounded by $z = 4 x^2 y^2$ and z = 0.
 - (b) $\mathbf{F} = \langle x, y, z \rangle$, σ is the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ (no bottom).
 - (c) $\mathbf{F} = \langle x^2 + \sin(yz), y xe^{-z}, z^2 \rangle$, σ is the surface of the region enclosed by $x^2 + y^2 = 4$, x + z = 2, z = 0.
 - (d) $\mathbf{F} = \langle x, -y, 0 \rangle$, σ is the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant.
 - (e) $\mathbf{F} = \langle 2, 5, 3 \rangle$, σ is the portion of the cone $z = \sqrt{x^2 + y^2}$ inside $x^2 + y^2 = 1$.
- 17. Show that $\nabla \times (\nabla f) = \mathbf{0}$.
- 18. Show that $\nabla \cdot (\nabla \times \langle f, g, h \rangle) = 0$.

- 19. Decide whether each of the following statements are true or false. If true, justify your answer. If false, give a counterexample.
 - (a) For every pair of differentiable functions f, g in one variable, $\int_C f(x) dx + g(y) dy$ is path independent.
 - (b) $\mathbf{F} = \langle xy^2, x^2z \rangle$ is an example of a vector field.
 - (c) If σ is a closed surface and \boldsymbol{F} is any vector field, then the flux of \boldsymbol{F} through σ is 0.
 - (d) If $\operatorname{curl} \boldsymbol{F} = \boldsymbol{0}$ with \boldsymbol{F} a 3-dimensional vector field with continuous first order partial derivatives, then $\int_C \boldsymbol{F} \cdot d\boldsymbol{r} = 0$ for any simple closed curve C.
 - (e) $\int_C \frac{x}{x^2+y^2} dx \frac{y}{x^2+y^2} dy$ is path independent.