Math 2400 Midterm Review 1

- 1. Consider the points A = (4, -2, 3), B = (8, -7, 6), and C = (6, -4, 6).
 - (a) Find the area of the parallelogram spanned by the vectors \vec{AB} and \vec{AC} .
 - (b) Find an equation of the plane containing the points A, B, C.
 - (c) Find an equation of the sphere centered at the origin and tangent to the plane containing the points A, B, C.
- 2. Are the planes Π_1 : x + z = 1 and Π_2 : y + z = 1 parallel, perpendicular or neither? If neither, find the angle between them.
- 3. If P = (1, 1, 0), Q = (0, 0, 1), and R = (x, y, z), describe the set of points (x, y, z) that satisfy $\vec{PR} \cdot \vec{QR} = 0$.
- 4. The following statements are either true or false. If true, then say so and explain why. If false, then say so and explain why or give a counter-example to show why the statement is false.
 - (a) If $\vec{a} \neq \vec{0}$ and $\vec{b} \neq \vec{0}$, then $\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} = 1$.
 - (b) $|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| ||\vec{v}||$
 - (c) The cross product of two unit vectors is a unit vector.
 - (d) If $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$, then \vec{u} and \vec{v} are orthogonal.
 - (e) $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v}) = 0$
 - (f) If \vec{v} and \vec{w} are nonzero nonparallel vectors of the same length, then $\vec{v} + \vec{w}$ and $\vec{v} \vec{w}$ are perpendicular.