
Differential Forms

Note: The following contains some advanced topics, not necessarily part of Calc 3. However, Some
of the things we will later learn (Jacobian, Divergence, Curl, Chain Rule) will either become easier,
or you can gain a deeper understanding with forms. I will be referencing these occasionally in class,
so it is helpful to know this, but not required. When I mention them in class, I will only use small
bits and pieces, and I will give a quick refresher on what is needed. However, it won’t make too
much sense without first glancing through this.

The objects dx, dy, dz, df, called differential forms, are not just notation; they do have important
meaning in math, but to really know what they are, takes a lot of sophistication. The easiest way
to think of these is through vector fields, which we will learn about later on in the course. In short,
a vector field assigns a vector to every point. So, for example, the vector field 〈x, y〉 would have
the zero vector at the origin, and radially, outward-pointing vectors at every other point, growing
longer as you move further away from the origin.

Every (2D) vector field can be written as a combination of the constant vector fields, 〈1, 0〉 , 〈0, 1〉,
denoted more formally as ∂

∂x
, d

dy
. That is. every vector field can be written as 〈f(x, y), g(x, y)〉 =

f ∂
∂x

+ g ∂
∂y
. The differential forms are defined by

dx

(
f
∂

∂x
+ g

∂

∂y

)
= f dy

(
f
∂

∂x
+ g

∂

∂y

)
= g.

In higher definitions, we have the expected definition
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So, in short, differential forms take in vector fields and spit out functions. So, in some sense, forms
are the opposite, or cancel out, vector fields.

Now, we can define the product of 1-forms dx and dy, called a 2-form, by

dx ∧ dy (u, v) = dx(u)dy(v)− dx(v)dy(u).

From this, we get
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The operation ”∧” is a lot like the cross product. Namely, it is anticommutative, and the distribu-
tative law holds. Also, it is associative. In general, for higher order products, it is easiest to use
the fact that forms split over sums and differences, and just use the fact that
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Again, as a reminder, since ∧ is anticommutative (dx∧ dy = −dy ∧ dx), we have that dx∧ dx = 0.



Forms In 3D

In 3 dimensions, with variables x, y, z, every form can be expressed like the following:

f (0-form)

f dx+ g dy + h dz (1-form)

f dx ∧ dy + g dy ∧ dz + h dz ∧ dx (2-form)

f dx ∧ dy ∧ dz (3-form)

There are no higher forms since we only have three dimensions, so a 4-form would have to repeat
a variable, making it 0.

Now, we define the derivative, d, which takes in forms, and spits out forms of 1 degree higher. Let
f be a function and α be a form just involving dx, dy, dz, and ∧ (That is, like above, but where
f = g = h = 1 or 0). Then, we define

d(f) = df =
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d(fα) = df ∧ α.

Again, the definition for higher dimensions works exactly how you would expect.
Now, the explicit computation of the derivative of a 1-form:

d(f dx+ g dy + h dz)

= (fx dx+ fy dy + fz dz) ∧ dx+ (gx dx+ gy dy + gz dz) ∧ dy + (hx dx+ hy dy + hz dz) ∧ dz
= 0 + fy dy ∧ dx+ fz dz ∧ dx+ 0 + gx dx ∧ dy + gz dz ∧ dy + 0 + hx dx ∧ dz + gy dy ∧ dz
= −fy dx ∧ dy + fz dz ∧ dx+ gx dx ∧ dy − gz dy ∧ dz − hx dz ∧ dx+ hy dy ∧ dz
= (gx − fy) dx ∧ dy + (hy − gz) dy ∧ dz + (fz − hx)dz ∧ dx.

Note: The above result looks like something you would get by taking the cross product. This fact
will be important later.

One can show that, in general, if you are working in any dimension and ω is any form, then

d2ω = d(dω) = 0.

This is a VERY important result, although showing it is a bit messy. It is mainly because of this
result that we will get all of our theorems in the last third of the course.

Applications

Hodge Star and the Cross Product

Define the Hodge star operator, ?, in 3-dimensions, which sends a k-form to a (3− k)-form, by

?(f) = f dx ∧ dy ∧ dz
?(f dx+ g dy + h dz) = h dx ∧ dy + f dy ∧ dz + g dz ∧ dx

?(f dx ∧ dy + g dy ∧ dz + h dz ∧ dx) = g dx+ h dy + f dz

?(f dx ∧ dy ∧ dz) = f.

Note: ?2(ω) = ?(?(ω)) = ω.
Now, if we identify a vector 〈a, b, c〉 with the form a dx+ b dy + c dz, we can define

~u× ~v = ?(~u ∧ ~v).



This is in fact the cross product that we already know!

The Chain Rule

Suppose you have a function f and compute its differential, df. If one of the terms is g dx, and all of

the other differentials are independent, then we have that
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change of f with respect to the variable x. As a consequence of this, consider a function f(x, y, t)
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So, the overall change of f with respect to the variable t would be
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notation, if we consider F (s, t) = f(x(s, t), y(t), t), then this is just
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.

The main note here is that you can compute derivatives using form, that would normally require
the chain rule, but now do not need any diagrams to compute.


