Quiz 2 Solutions

MATH 2300-002

January 26, 2010

1. (a)
$$\int_{1}^{100} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{1}^{100} = 1 - \frac{1}{100} = \frac{99}{100}.$$

(b)
$$\int_{1}^{10000} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{1}^{10000} = 1 - \frac{1}{10000} = \frac{9999}{10000}.$$

(c)
$$\int_{1}^{1000000} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{1}^{1000000} = 1 - \frac{1}{1000000} = \frac{999999}{1000000}.$$

(d)
$$\int_{1}^{N} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{1}^{N} = 1 - \frac{1}{N} = \frac{N-1}{N}.$$

(e)
$$\lim_{N \to \infty} \int_{1}^{N} \frac{1}{x^2} dx = \lim_{N \to \infty} 1 - \frac{1}{N} = 1.$$

- (f) What does this limit represent? This says that the area under $f(x) = \frac{1}{x^2}$ to the right of x = 1 is 1.
- 2. Repeat the last problem with $f(x) = \frac{1}{\sqrt{x}}$.

(a)
$$\int_{1}^{100} \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x}\right]_{1}^{100} = 2\sqrt{100} - 2 = 18.$$

(b)
$$\int_{1}^{10000} \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x}\right]_{1}^{10000} = 2\sqrt{10000} - 2 = 198.$$

(c)
$$\int_{1}^{1000000} \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x}\right]_{1}^{1000000} = 2\sqrt{1000000} - 2 = 1998.$$

(d)
$$\int_{1}^{N} \frac{1}{\sqrt{x}} dx = \left[2\sqrt{x}\right]_{1}^{N} = 2\sqrt{N} - 2.$$

(e)
$$\lim_{N \to \infty} \int_{1}^{N} \frac{1}{\sqrt{x}} dx = \lim_{N \to \infty} 2\sqrt{N} - 2 = \infty.$$

(f) What does this limit represent? This says that the area under $f(x) = \frac{1}{\sqrt{x}}$ to the right of x = 1 is infinite.

3. Verify Simpson's rule with one iteration (SIMP(1)) gives the exact answer for the definite integral of every cubic (or lower) polynomial.

Note that for constants a, b and continuous functions f, g we have that LEFT(af+bg,n)=aLEFT(f,n)+bLEFT(g,n), and similarly for the other evaluation functions. So, it is enough to show for $1, x, x^2$ and x^3 . Furthermore, a substitution of $u=\frac{x-a}{b-a}$ will convert a general integral on [a,b] to one on [0,1]. This will complicate the integrand, but it will still be a cubic on u. So, it is enough to consider $\int_0^1 1 \, dx$, $\int_0^1 x \, dx$, $\int_0^1 x^2 \, dx$, $\int_0^1 x^3 \, dx$.

	ACTUAL	LEFT	RIGHT	MID	TRAP	SIMP
$\int_0^1 1 dx$	1	1	1	1	$\frac{1+1}{2} = 1$	$\frac{2(1)+1}{3} = 1$
$\int_0^1 x dx$	$\frac{1}{2}$	0	1	$\frac{1}{2}$	$\frac{0+1}{2} = \frac{1}{2}$	$\frac{2(\frac{1}{2}) + \frac{1}{2}}{3} = \frac{1}{2}$
$\int_0^1 x^2 dx$	$\frac{1}{3}$	0	1	$\left(\frac{1}{2}\right)^2 = \frac{1}{4}$	$\frac{0+1}{2} = \frac{1}{2}$	$\frac{2(\frac{1}{4}) + \frac{1}{2}}{3} = \frac{1}{3}$
$\int_0^1 x^3 dx$	$\frac{1}{4}$	0	1	$\left(\frac{1}{2}\right)^3 = \frac{1}{8}$	$\frac{0+1}{2} = \frac{1}{2}$	$\frac{2(\frac{1}{8}) + \frac{1}{2}}{3} = \frac{\frac{1}{4} + \frac{2}{4}}{3} = \frac{1}{4}$

4. Use partial fractions to expand $\frac{1}{x^4 - 1} = \frac{1}{(x - 1)(x + 1)(x - i)(x + i)}$. Your work should involve complex numbers, but your answer should not. Using the cover-up method, we get

$$\frac{1}{(x-1)(x+1)(x-i)(x+i)} = \frac{1/4}{x-1} + \frac{-1/4}{x+1} + \frac{1/(4i)}{x+i} + \frac{-1/(4i)}{x-i}$$

$$= \frac{1/4}{x-1} + \frac{-1/4}{x+1} + \frac{\frac{x-i-(x+i)}{4i}}{x^2+1}$$

$$= \frac{1/4}{x-1} + \frac{-1/4}{x+1} + \frac{\frac{-2i}{4i}}{x^2+1}$$

$$= \frac{1/4}{x-1} + \frac{-1/4}{x+1} + \frac{-1/2}{x^2+1}.$$