Quiz 2

MATH 2300-002

January 26, 2010

1. (a)
$$\int_{1}^{100} \frac{1}{x^2} dx =$$

(b)
$$\int_{1}^{10000} \frac{1}{x^2} dx =$$

(c)
$$\int_{1}^{1000000} \frac{1}{x^2} dx =$$

(d)
$$\int_{1}^{N} \frac{1}{x^2} dx =$$

(e)
$$\lim_{N \to \infty} \int_{1}^{N} \frac{1}{x^2} dx =$$

(f) What does this limit represent?

2. Repeat the last problem with $f(x) = \frac{1}{\sqrt{x}}$.

3. Verify Simpson's rule with one iteration (SIMP(1)) gives the exact answer for the definite integral of every cubic (or lower) polynomial. It is enough to consider $\int_0^1 1 dx$, $\int_0^1 x dx$, $\int_0^1 x^2 dx$, $\int_0^1 x^3 dx$. Try to explain why.

	ACTUAL	LEFT	RIGHT	MID	TRAP	SIMP
$\int_0^1 1 dx$						
$\int_0^1 x dx$						
$\int_0^1 x^2 dx$						
$\int_0^1 x^3 dx$						

4. Use partial fractions to expand $\frac{1}{x^4 - 1} = \frac{1}{(x - 1)(x + 1)(x - i)(x + i)}$. Your work should involve complex numbers, but your answer should not.