1. (10)

Given that
$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$
 and that $\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90}$, calculate the values of

(i)
$$\sum_{k=3}^{\infty} \frac{1}{k^2}$$
;

(ii)
$$\sum_{k=1}^{\infty} \frac{3-k^2}{k^4}$$
.

2. (30) Determine whether each of the following series converges absolutely, converges conditionally or diverges.

(i)
$$\sum_{k=1}^{\infty} \sin\left(\frac{k}{k+\ln k}\right)$$
;

$$\text{(ii) } \sum_{k=1}^{\infty} \frac{5}{4 + e^k};$$

(iii)
$$\sum_{k=1}^{\infty} \frac{k \cos(k\pi)}{k^2 + 1}.$$

3. (20) Determine whether each of the following series converges absolutely, converges conditionally or diverges.

(i)
$$\sum_{k=1}^{\infty} \ln\left(\frac{k}{k+1}\right);$$

(ii) $\sum_{k=1}^{\infty} \frac{5 + (-1)^k}{\sqrt{k}}$.

4. (20) Find the interval of convergence for each of the following series.

(i)
$$\sum_{k=0}^{\infty} k!(x-5)^k$$
;

(ii)
$$\sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^k}{k}$$
.

5. (10) Find the Taylor series for e^x about x = 1.

- 6. (10)
- (i) Find the interval of convergence for the series $\sum_{k=0}^{\infty} \left(\frac{x-1}{3}\right)^k$.

(ii) What function does this series converge to?

Name: _			
Section:			

University of Colorado

Mathematics 2300: Third Midterm Exam

April 9, 2008

No calculators, formula sheets, notes or books are allowed.

Justify your answers. Correct answers with no justification may not receive full credit.

Problem	Points	Score
1	10	
2	30	
3	20	
4	20	
5	10	
6	10	
Total	100	