11.5 Tensor algebras, Symmetric and Exterior Algebras.

Q: Can ne mala en R. module TI into eni-8.

Let R be a commutative ring with 1 and M an R-module.

We extend M to obtain a ring with addition + and multiplication \otimes .

Definition. For $k \in \mathbb{N}$, define the set of k-tensors,

$$T^k(M) := M \otimes_R M \otimes_R \cdots \otimes_R M$$
 (k factors),

$$T^0(M) := R,$$

$$T(M) := \bigoplus_{k>0} T^k(M).$$

M is a submodule of T(M) by identifying M with $T^1(M)$.

Theorem.

- $(1) \ (T(M),+,\otimes) \ is \ an \ \underline{R-algebra} \ (called \ the \ \underline{tensor} \ \underline{algebra} \ of \ \underline{M}).$
- (2) (Universal Property) For any R-algebra A and R-module homomorphism $\varphi \colon M \to A$, there exists a unique R-algebra homomorphism $\Phi \colon T(M) \to A$ such that $\Phi|_M = \varphi$.

Proof. (2) R-multilinear $M^k \to A$, $(m_1, \ldots, m_k) \mapsto \varphi(m_1) \cdots \varphi(m_k)$, yields Φ . \square

Corollary. Let V be a vector space over F with basis $B = \{v_1, \ldots, v_n\}$. Then

$$v_{i_1} \otimes \cdots \otimes v_{i_k}$$
 for $i_1, \ldots, i_k \in \{1, \ldots, n\}$

form a vector space basis for $T^k(V)$. In particular $\dim T^k(V) = \bigvee^{\mathsf{L}}$

Proof.

Note. T(V) can be regarded as the algebra of polynomials over F in noncommuting variables v_1, \ldots, v_n .

Example. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}/n\mathbb{Z}$.

$$M \otimes M \cong \mathbb{Z}/\mathbb{Z} \hookrightarrow \mathbb{M}$$

$$T(M) \cong \mathbb{Z} \oplus \mathbb{M} \oplus \mathbb{M} \oplus \mathbb{M} \oplus \mathbb{M}$$
 as module $\mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} / (\mathbb{M} \times \mathbb{Z}) \otimes \mathbb{Z}$ as module

identifying 101 with x

Symmetric Algebras.

Question. What is the maximal commutative quotient of T(M)?

Definition. The <u>symmetric algebra</u> of an R-module M is

$$S(M) := T(M)/C(M)$$

for the ideal C(M) of T(M) generated by $m_1 \otimes m_2 - m_2 \otimes m_1$ for all $m_1, m_2 \in M$.

Theorem.

- (1) S(h) is a commutative R-algebra.
- (2) (Universal Property for maps to commutative R-algebras) For any commutative R-algebra A and R-module homomorphism $\varphi \colon M \to A$, there exists a unique R-algebra homomorphism $\Phi \colon S(M) \to A$ such that $\Phi|_M = \varphi$.
- (3) (Universal Property for symmetric multilinear maps) For any symmetric k-multilinear map $\varphi \colon M^k \to N$, there exists a unique R-module homomorphism $\Phi \colon S^k(M) \to N$ such that $\varphi = \Phi \circ \iota$ where

$$\iota \colon M^k \to S^k(M), \ (m_1, \dots, m_k) \mapsto m_1 \otimes \dots \otimes m_k + C(M).$$

Proof. As in the general case using that $C^k(M)$ is in the kernel of any symmetric map $T^k(M) \to N$.

Corollary. Let V be an n-dimensional F-vector space. Then $S(V) \cong \mathcal{F} \stackrel{\text{Lx}}{\downarrow} \mathcal{F} \stackrel{\text{x}}{\downarrow} \mathcal{F} \stackrel{\text{x$

Exterior Algebras.

Question. How to characterize alternating multilinear maps?

Definition. The exterior algebra of an R-module M is

$$\bigwedge(M) := T(M)/A(M)$$

for the ideal A(M) of T(M) generated by $m \otimes m$ for all $m \in M$.

We write

$$m_1 \wedge \cdots \wedge m_k := m_1 \otimes \cdots \otimes m_k + A(M)$$

and \wedge for the product (called the *wedge* or *exterior product*) in $\bigwedge(M)$.

Note. Since $m \wedge m = 0$ for all $m \in M$,

- (1) $m_1 \wedge m_2 = -m_2 \wedge m_1$ for all $m_1, m_2 \in M$ and
- (2) $m_1 \wedge \cdots \wedge m_k = 0$ if $m_i = m_j$ for some $i \neq j$.

(2) $m_1 \wedge \cdots \wedge m_k = 0 \text{ if } m_i - m_j \text{ is some } i$, and i) $O = (m_1 + m_2) \wedge (m_1 + m_2) = m_1 \wedge m_1 + m_1 \wedge m_2 + m_2 \wedge m_1 + m_2 \wedge m_2$ Q: Dolo (1) imply man = > Vmety? yes if char R + 2

Theorem. (Universal Property for <u>alternating multilinear maps</u>) For any alternating k-multilinear map $\varphi \colon M^k \to N$, there exists a unique R-module homomorphism $\Phi \colon \bigwedge^k(M) \to N$ such that $\varphi = \Phi \circ \iota$ where

$$\iota \colon M^k \to \bigwedge^k(M), \ (m_1, \dots, m_k) \mapsto m_1 \wedge \dots \wedge m_k.$$

Corollary. Let V be a vector space over F with basis $B = \{v_1, \dots, v_n\}$. Then

$$v_{i_1} \wedge \cdots \wedge v_{i_k}$$
 for $1 \leq i_1 < \cdots < i_k \leq n$

form a vector space basis for $\bigwedge^k(V)$ if $k \leq n$, $\lambda^k(V) = \binom{n}{k}$ If how, then N'(V)=0.

Homomorphisms of Tensor Algebras.

 $\varphi \in \operatorname{Hom}_R(M,N)$ induces an R-module homomorphism on the k-th tensor power

$$T^k(\varphi) \colon T^k(M) \to T^k(N), \ m_1 \otimes \cdots \otimes m_k \mapsto \varphi(m_1) \otimes \cdots \otimes \varphi(m_k).$$

- Similar for S^k and \bigwedge^k . Since C'(n), A'(n) one invariant under $T'(\phi)$,
- Further φ induces R-algebra homomorphisms on $T(M), S(M), \bigwedge(M)$.

Example. Let V be an F-vector space with basis $B = \{v_1, \ldots, v_n\}$ and $\varphi \in$ $\operatorname{End}_F(V)$.

Then $v_1 \wedge \cdots \wedge v_n$ is a basis of $\bigwedge^n V$ and

$$\bigwedge^{n}(\varphi)(v_1 \wedge \cdots \wedge v_n) = D(\varphi)v_1 \wedge \cdots \wedge v_n$$

for some $\underline{D(\varphi)} \in F$. For $A = (a_{ij}) \in M_{n \times n}(F)$ define $\varphi_A \colon V \to V$ such that $M_B^B(\varphi_A) = A$, i.e.,

$$\varphi_A(v_j) := \sum_{i=1}^n a_{ij} v_i.$$

Show that $D(A) := D(\varphi_A)$ satisfies the defining properties of the determinant to obtain the following.

Theorem. Let $\varphi \in \operatorname{End}_F(V)$ and $\dim_F V = n$. Then

$$\bigwedge^{n}(\varphi)(x) = (\det \varphi)x \text{ for all } x \in \bigwedge^{n}(V).$$

Note. Hence $\det \varphi$ is characterized as a natural linear map on $\bigwedge^n(V)$ independent of the choice of a basis B for $M_B^B(\varphi)$.