11.3 Dual spaces.

Example. $V := \{f : \mathbb{R} \to \mathbb{R} : f \text{ differentiable } \}$ is a vector space over \mathbb{R}

$$V := \{J : \mathbb{Z} \to \mathbb{Z} : J \text{ differentiable } S \text{ a vec} \}$$

$$f \mapsto f(I)$$

$$f \mapsto f(O)$$

Definition. $V^* := \operatorname{Hom}_F(V, F)$ is the *dual space* of the F-vector space V; its elements are linear functionals. ((Lasa forms)

If $B = \{b_1, \ldots, b_n\}$ a basis of V, then $\tilde{B}^* := \{b_1^*, \ldots, b_n^*\}$ defined by

$$b_i^*(b_j) := \delta_{ij} \text{ for } i, j \in \{1, \dots, n\}$$

Knowder delta Sij = (1: [in]

6* · V → F is the dual basis of B.

Theorem. Let $B = \{b_1, \ldots, b_n\}$ be a basis of V.

- $(1) \dim V^* = n$
- (2) $M_B^{E_1}(b_i^*) = (0 \dots 0 \, 1 \, 0 \dots 0)$ (3) B^* is a basis of V^* .

Question. What is the dual of the standard basis E_n of F^n ?

V -> W -> F Fix $\varphi \in \operatorname{Hom}_F(V, W)$. * 9* N* For $f \in \operatorname{Hom}_F(W, F)$, $f \circ \varphi \in \operatorname{Hom}_F(V, F)$. Define $\varphi^* \colon W^* \to V^*, \ f \mapsto f \circ \varphi.$

Theorem. Let V, W be finite dimensional with bases B, C, respectively. Let $\varphi \in$ $\operatorname{Hom}_F(V,W)$.

Then $\varphi^* \in \operatorname{Hom}_F(W^*, V^*)$ and $M_{C^*}^{B^*}(\varphi^*) = M_B^C(\varphi)^T$.

Proof. p* is linear because f. ee W*, ce F q* (f+g) = (f+g). q = foq + go q = p* (1) + p* (g) 4 (c f) =

Leb Be (617-162), (= (617-162) and TB (q) = (0ij). Then p(bi) = Z Rijci (a ell jen. Claim: q* (ci) = \(\tilde{\tau} \) \(\tilde{\tau}

Evaluate bolisides on B:

(φ*(ci))(bi) = (ci ο φ)(bi) = ci (y (bi)) = ci (ξ αι (ν) = = \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2 (Zeilbi) (bi) = Zeilbiz (bi) = aii (lain proved. Corollary. For any matrix A, the column rank of A is equal to the row rank of A.

Show q: x to bx and pt have be same rank (duncos and Proof. (som See book (page 436).

Note. If dim $V < \infty$, then $V \cong V^* \cong (V^*)^*$.

While the isomorphism $V \to V^*$ depends on a choice of the basis,

 $V \to (V^*)^*, \ v \mapsto E_v$ valural embedding D

for the evaluation map $E_v: V^* \to F$, $f \mapsto f(v)$, does not.

Note: If V has en inflicte booss B, then V= FB is the direct subold V* F FB d. vect product (HW).