11.1 Vector spaces.

Recall from Linear Algebra:

- A ring F is a field if $(F \{0\}, \cdot)$ is a commutative group.
- An F-module V for a field F is a vector space over F (F-vector space).
- $A \subseteq V$ is linearly independent in an F-vector space V if $\forall n \in \mathbb{N} \ \forall$ distinct $a_1, \ldots, a_n \in A \ \forall r_1, \ldots, r_n \in V$:

$$r_1 a_1 + \dots + r_n a_n = 0$$
 implies $r_1 = \dots = r_n = 0$.

- $A \subseteq V$ spans V if FA = V.
- A is a basis of $FA \leq V$ iff A is linearly independent.

Tourise Example.

- 1) + has bac's e,,-, en
- 2) Fix] has basis (xi (ic No]

Question.

- (1) Does every vector space V have a basis?
- (2) If V has bases A, B, how do they relate?

Theorem. Every finitely generated vector space has a basis.

Proof. We have
$$V = FA$$
 for A finite.

If $\exists b \in A$ such that

 $\exists c_a Q = O$ with $c_b \neq O$.

set

Then $A \mid \Sigma b \Im = : A$, still germales V

Repeat $A \ni A$, $\ni A_2 \longrightarrow$

Process stops since A is finite at some basis A of V . D

Example.

Theorem. If A, B are bases of a vector space V and |A| is finite, then |A| = |B|. follows Juon

Replacement Theorem. Let $\{a_1, \ldots, a_n\}$ span V, let $\{b_1, \ldots, b_m\} \subseteq V$ linearly independent. Then $\exists \pi \in S_n \ \forall k \leq m : \{b_1, \ldots, b_k, a_{\pi(k+1)}, \ldots, a_{\pi(n)}\}\ spans\ V$. In particular, $m \leq n$.

Proof. by induction on le

1=0 V

lad hypodiesis (6,7-16, atiller))-1 atill 3 apars V

Then been = B, b, 1-+ B, b, 1 Ken, Qq(40) +- + Kn QQ(4) Since 6,7-, bas, is lin independent, there exist some ice { boly-, in3 S.b. K; + O.

Redefining the in necessary, assure Russido.

The Q ((42)) = + { b() - 1 b & 1 b (41) } = V Proof of The (K): By Replace on The, du size of any (in independent set is less or equal to the size of any (in independent). So | H = 181 and | DI = 141.

Dimension.

Definition. If a vector space V is finitely generated, the dimension dim V is the size of a basis of V; V is finite dimensional.

If V is not finitely generated, then V is infinite dimensional, $\dim V = \infty$.

Example.

dian Fh din Fix]

Corollary (Building-Up Lemma). Let V be finite dimensional and $A \subseteq V$ linearly independent. Then there exists a basis of V containing A.

the Replacement Thum with basis B and Alin instigundent

J

Theorem. If V is an F-vector space and dim V = n, then $V \cong F^n$.

Lat B=(b,,-,b) be a basis for V. y: F" -> V isa iso. (a) (b) Za(b)

Question. What is a basis of $\mathbb{R}^{\mathbb{N}}$?

Note. That every infinite dimensional vector space has a basis (= a maximal linearly independent set) is equivalent to

Zorn's Lemma. If every chain in a partially ordered set P has an upper bound in P, then P contains a maximal element.

HW

Theorem. Let V be a vector space over F with subspace W. Then $\dim V = \dim V/W + \dim W$ (where if one side is infinite, then both are).

sa book

Corollary. For $\varphi \in \operatorname{Hom}_F(V, W)$,

$$\dim V = \dim \ker \varphi + \dim \varphi(V).$$