10.4 Tensor products.

Extending scalars. Let R be a subring of S (with the same 1).

- Each S-module is also an R-module.
- \bullet Conversely, can each R-module N be made an S-module?

No, du Zemod Z cannob be node un beal-mod.

Else
$$\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = (\frac{1}{2} \cdot \frac{1}{2}) \cdot 1 = 1 \cdot 1 = 1$$
 yields $2x = 1$.

Still Z can be embedded into the D-module Q.

We'd need a map $S \times N \to N$, $(s, n) \mapsto sn$, that is additive in both components and satisfies (sr)n = s(rn) for all $s \in S, r \in R, n \in N$ to make the actions of R and S on N compatible.

Consider the free \mathbb{Z} -module (abelian group) over $S \times N$

$$\mathcal{F}(S \not\sim \mathcal{D}) \qquad F := \{ \sum_{i=1}^k a_i(s_i, n_i) : k \in \mathbb{N}, a_i \in \mathbb{Z}, s_i \in S, n_i \in N \}.$$

To obtain the properties of an S-module take the quotient of F by the subgroup H generated by all elements

$$(s_1 + s_2, n) - (s_1, n) - (s_2, n)$$

 $(s, n_1 + n_2) - (s, n_1) - (s, n_2)$
 $(sr, n) - (s, rn)$

for $s, s_1, s_2 \in S, n, n_1, n_2 \in N, r \in R$.

Then $(s_1 + s_2, n) \equiv (s_1, n) + (s_2, n)$ modulo H, etc.

Definition. $F/H =: S \otimes_R N$ is the tensor product of S and N over R.

Elements in $S \otimes_R N$ are called *tensors* and can be written (non-uniquely) as finite sums of 'simple' tensors $s \otimes n := (s, n) + H$ for $s \in S, n \in N$.

Lemma. $S \otimes_R N$ is an S-module under

$$s(\sum s_i \otimes n_i) := \sum (ss_i) \otimes n_i,$$

called the S-module obtained by extension of scalars from the R-module N.

Proof. Show the orling of S is well defined.

I) Lebli-Z (signification of S is well defined.

Then
$$Z$$
 ($dsinificate < C$) = $dsinificate < C$.

Ex. $h = (s, n_1 + n_2) - (s_1 n_3) + (s_1 n_4) - (s_1 n_4) + (dsinificate < C)$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate < C$) = $dsinificate < C$

($dsinificate$

So
$$Z = \{s \in \emptyset \mid n \in \mathbb{Z} = \mathbb{Z} \mid s \in \emptyset \mid n \}$$

Check the module properties

$$(\{s \in \mathbb{Z} \mid s \in \mathbb{$$

 $\iota: N \to S \otimes_R N, \ n \mapsto 1 \otimes n,$ is an R-module homomorphism (not necessarily injective) $\iota: N \to S \otimes_R N, \ n \mapsto 1 \otimes n$

 $S \otimes_R N$ is the 'best possible' S-module as codomain of an R-module homomorphism by the following universal property:

Theorem. Let L be an S-module and $\varphi \in \operatorname{Hom}_R(N, L)$. Then there exists a unique $\Phi \in \operatorname{Hom}_S(S \otimes_R N, L)$ such that $\varphi = \Phi \circ \iota$.

Proof.

N = Sept F " p feedows bloward Sept"

Proof. Leb F is the free Z-mod one Sth.

By the universal mapping property of Z-modules I! Z-mod from \$\tilde{\pi}:F > L, (s,u) is 3 p(u)

Note \$\tilde{\pi}\$ is 0 on \$C\$, hence \$\tilde{\pi}(H) = 0\$.

So \$\tilde{\pi}\$ induces a well defined \$\tilde{\pi}:F/H > L with

\$\tilde{\pi}(\left(\left(\pi) - \left(\left(\pi))) = \tilde{\pi}(\left(\pi))

Claim: \$\tilde{\pi}\$ e Hans (Sept), L)

\$\tilde{\pi}\$ is additive since \$\tilde{\pi}\$ is

Let \$deS\$. Then \$\tilde{\pi}(1 \cdots \tilde{\pi}) = \tilde{\pi}s \tilde{\pi}(\pi) = \tilde{\pi}(\pi)

Corollary. $N/\ker\iota$ is the unique largest quotient of N that embeds into an S-module.

Example. 1) Lel N b. a. T. wood

R & N = N

Use $\varphi = id$ in the above them, to see ϵ is an ϵ so with inner ϕ .

- 2) A fin abelian group, Z-mod $Q \otimes_Z A = Q$ Let $q \circ Q$, n = |A|, $a \in A$ $q \otimes a = (q n) \otimes a \cdot q \otimes na \cdot q (100) = Q$.
- 3) Induction of modules are group vinos

 Let R be comme ving with 1, H & C for group.

 Non RH-module.

 Then RC & N is the RC-mod induced by RW.