14.9 Transcendental extensions.

Idea. Extend fields by elements that are <u>not algebraic</u> (i.e., are <u>transcendental</u>).

Definition. Let K/F.

 $S \subseteq K$ is <u>algebraically independent</u> over F if for all finite subsets $\{\alpha_1, \ldots, \alpha_n\} \subseteq S$ and all $f(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n]$

$$f(\alpha_1, \dots, \alpha_n) = 0 \implies f(x_1, \dots, x_n) = 0.$$

 $\alpha \in K$ is transcendental over F if $\{\alpha\}$ is algebraically independent.

A transcendence basis $B \subseteq K$ over F is a maximal algebraically independent subset of K.

Example. It is all independent over \overline{t} in any valuable function (it of $\overline{F}(t)$ of $\overline{F}(t)$ over \overline{t} , then $\overline{F}(\kappa) \subseteq \overline{F}(t)$.

E.e. $Q(\overline{t}) \subseteq Q(e)$

Theorem. Every K/F has a transcendence basis, and all such bases have the same cardinality.

Proof. Zan's Lemna & Replacement similar bo Lin Algebra.

Definition. The <u>transcendence degree</u> of K/F is the cardinality of its transcendence basis.

Example. 1) K/F is document if its houseconte a basis is of upby.

2)
$$\mathbb{Q}(1)/\mathbb{Q}$$
 has basis $[21]$

$$[21^2+1]$$

$$\mathbb{Q}(1)$$

- 3) Q(x,1-1xu) (Q has bosis {x11-1xu}, {s11-1sul, {p11-1pc}.
- 4) Transcendence degree of R/D, C/D is 2". Cordlary: IKfC: KcC esfelds.
- 5) Transcedence degree O(e, T) e {1,2}, noblemours.
 Open: 13 e+T e Q?

Schanuel's Conjecture. (Transcendental Number Theory)

For any $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ that are linearly independent over \mathbb{Q} , the transcendence degree of

$$\mathbb{Q}(\alpha_1,\ldots,\alpha_n,e^{\alpha_1},\ldots,e^{\alpha_n})/\mathbb{Q}$$

is > n.

Open.

Ex Assuring Schanuel's Conjecture, for
$$\alpha_1 = 1$$
, $\alpha_2 = \overline{u}$:
$$\mathbb{Q}\left(1, \overline{u}, e', e^{\overline{u}}\right) / \mathbb{Q} \text{ has branched degree } 2.$$

Theorem. Let t be transcendental over F.

- (1) (Lüroth) If $F \leq K \leq F(t)$, then K = F(s) for some $s \in F(t)$.
- (2) Let $p(t), q(t) \in F[t]$ be non-constant and coprime. Then

$$[F(t): F(p(t)/q(t))] = \max(\deg p(t), \deg q(t)).$$

Proof.

Corollary. Aut $(F(t)/F) \cong PGL_2(F)$.

Proof.

Theorem (Hilbert). Let $L = \mathbb{Q}(x_1, \ldots, x_n)$ with transcendence basis x_1, \ldots, x_n , let $G \leq \operatorname{Aut}(L/\mathbb{Q})$ be finite and

$$K = Fix(G) = \mathbb{Q}(a_1, \dots, a_n)$$

with transcendence basis a_1, \ldots, a_n .

Then there are infinitely many $f: \{a_1, \ldots, a_n\} \to \mathbb{Q}$ whose extension $\bar{f}: \{x_1, \ldots, x_n\} \to \mathbb{C}$ satisfies

$$\operatorname{Gal}(\mathbb{Q}(\bar{f}(x_1),\ldots,\bar{f}(x_n))/\mathbb{Q}) \cong G.$$

Corollary. For any $n \in \mathbb{N}$, S_n is a Galois group for some K/\mathbb{Q} .

Proof. \Box

Infinite Galois extensions.

All our results were developed for **finite** Galois extensions. More generally we could have defined:

Definition. K/F is Galois if K/F is algebraic, normal and separable.

In general there is no bijection between subgroups of $\operatorname{Gal}(K/F)$ and fields $F \leq E \leq K$ for infinite extensions.

Example. $K := \mathbb{Q}(\sqrt{p}: p \text{ is prime})$ is a (countably) infinite Galois extensions of \mathbb{Q} .

GCQ(K/Q) is an equally debunioned by

G(Jp) = 1 Jp for princs 7.

G². id and G:= (el (K/Q) is an elembary do 2-group

(inf din beoborspool over to)

Recall: V* = How (V, F2) is an combable.

Hera V has uncombably many chapters of codimision (in V.

G -11- 2 degraps of index 2.

But there are only cambably many quadratic edesie of Q in R.

Resum: use bopdopically closed subgroups.