14.6 Galois groups of polynomials.

Recall. For separable $f(x) \in F[x]$ with splitting field K and $f(x) = (x - \alpha_1) \dots (x - \alpha_n)$ over K,

$$Gal(K/F) \hookrightarrow S_n$$
.

Symmetric functions.

 S_n acts on the rational function field $F(x_1, \ldots, x_n)$ for indeterminates x_1, \ldots, x_n via $\pi(x_i) = x_{\pi(i)} \quad \text{for } \pi \in S_n, 1 \le i \le n.$

Definition. Fix $(S_n) := \{a \in F(x_1, \dots, x_n) : \pi(a) = a \text{ for all } \pi \in S_n\}$ is the set of all <u>symmetric</u> rational functions (invariant under permutations of x_1, \dots, x_n). For $1 \le k \le n$ the k-th <u>elementary</u> symmetric function of x_1, \dots, x_n is

$$s_k := \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} \dots x_{i_k} \in \operatorname{Fix}(S_n).$$

Example. $\underbrace{\times_{i}^{2}}_{S_{i}^{2}}\underbrace{-2}_{g_{i}}^{2}$ G F:×(S_u)

8, = X, 4 ×2 + - + × 6

Gn = x, - yn

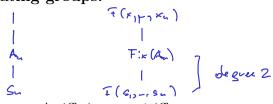
Theorem. $F(x_1, \ldots, x_n)/F(s_1, \ldots, s_n)$ is Galois with Galois group S_n , and $F(s_1, \ldots, s_n) = Fix(S_n)$ in Side $F(x_1, \ldots, x_n)$.

Proof. $F(x_{13}-1x_{11})$ in the splitting fided of $(y-x_{1})-(y-x_{11})=y^{n}-s_{1}y^{n-1}+s_{2}-y^{n-2}---t(-1)^{m}s_{11}\in F(s_{13}-1,s_{11})$ [4]

Hence $F(x_{13}-x_{21})/F(s_{13}-x_{21})$ is Latois. $F(s_{13}-x_{21})=F(s_{13}-x_{21})+s_{21}$ is Latois. $F(s_{13}-x_{21})=F(s_{13}-x_{21})+s_{21}$ $F(x_{13}-x_{21})=F(s_{23}-x_{21})$ $f(x_{13}-x_{21})=F(s_{23}-x_{21})$

Corollary (Fundamental Theorem of Symmetric Functions). Every symmetric function in x_1, \ldots, x_n is a rational function in s_1, \ldots, s_n .

Alternating groups.



Recall. $\sigma \in A_n$ iff sign $\sigma =$

$$\sigma(\prod_{1 \le i < j \le n} (x_i - x_j)) = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Thus, if $chF \neq 2$, then

$$F(s_1,\ldots,s_n) \neq F(s_1,\ldots,s_n,\prod_{1 \leq i < j \leq n} (x_i-x_j)) = \operatorname{Fix}(A_n)$$

Discriminant.

Definition. For $f(x) \in F[x]$ of degree n with roots $\alpha_1, \ldots, \alpha_n$ in some splitting field, the discriminant is

$$D(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

$$\int_{\mathcal{C}} (\mathbf{x} - \mathbf{x}_i) - (\mathbf{x} - \mathbf{x}_i) \in \mathcal{F}(\mathbf{x})$$

Note.

(1) $D(f) \neq 0$ iff f is separable.

(2) $D(f) \in F$.

(κ) (κ-κ) -- (x·κ) ε ξίχ] = x^N - S₁(κ₁-,κ_n) xⁿ⁻¹ + S₂(κ₁,-,κ₁) xⁿ⁻²-...

Since D(f) is invariant under Sn, it is auxilianal function of the S; (x,1-xu), luna in F. **Theorem.** Let $f(x) \in F[x]$ be separable of degree n. Then the Galois group of f(x) embeds into A_n iff $x^2 - D(f)$ splits over F.

Proof.
$$\sqrt{\sum_{i \in j}} = \mathbb{T}(\alpha_i - \alpha_j) \in \mathbb{F}(x \mid A_n)$$

Galois groups by polynomial degree.

Degree 2.
$$f(x) = x^2 + bx + c$$

$$= (x - \alpha)(x - \beta)$$

$$= x^2 - s, (\kappa, \beta) \times f + s, (\kappa, \beta)$$

$$\int D(\xi) = (\kappa - \beta)^2$$

$$= s, (\kappa, \beta)^2 - 4s, (\kappa, \beta)$$

$$= b^2 - 4c$$

$$\int (x) is correctle iff $D(\xi) \neq 0$$$

$$\int (al (\(\xi\)(\xi\))/\(\xi\)) \sigma \(\xi\)(\xi\)(\xi\)$$

Degree 3.
$$f(x) = x^3 + ax^2 + bx + c$$

$$= (x - \alpha)(x - \beta)(x - \gamma)$$

$$= x^3 - 3 \cdot x^2 + 3 \cdot x - 3$$

$$D(x) = (x \cdot 6)^2 (6 \cdot 2)^4 (2 \cdot 4)^2$$

$$= 2^6 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 18c b c)$$

$$= 2^9 b^2 - 4(b^2 - 42^3 c - 27c^2 + 1$$

Degrae 4. Su Look

The Fundamental Theorem of Algebra.

Recall.

- (1) If $f(x) \in \mathbb{R}[x]$ has odd degree, then f(x) has a root in \mathbb{R} (Intermediate Value Theorem).
- (2) If $f(x) \in \mathbb{C}[x]$ has degree 2, then f(x) splits (Quadratic Formula).

Fundamental Theorem of Algebra. \mathbb{C} is algebraically closed.

Proof. To show $\overline{\mathbb{R}} = \mathbb{C}$, let f or g $\mathbb{R}[x]$ with splitting field le (may associated for is squarefrom, here separate). K(i) is Codois over \mathbb{R} .

Let P be the Sylon 2-subgroup of L al $(K(i)/\mathbb{R}) = : C$. K(i) K(iHera G is a 2-group. Since Chasno quadratic abusines by (2), K(i) = C ad K = C.