14.5 Cyclotomic extensions.

Inverse Galois Problem: Which finite groups occur as Galois groups Gal(K/F)

for some K/F?

Shafaverich: Every solvable group is the Codois group of some K/\mathbb{Q} .

Open for $F = \mathbb{Q}$ is general.

Let $\zeta_n := e^{\frac{2\pi i}{n}}$ a primitive n-th root of unity.

Theorem. For $n \in \mathbb{N}$,

$$\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong \left(\mathbb{Z}_n^*, \cdot\right)$$

Note. For $n = p_1^{k_1} \dots p_\ell^{k_\ell}$ for distinct primes p_1, \dots, p_ℓ and $k_1, \dots, k_\ell \ge 1$,

$$\mathbb{Z}_n^* \cong \mathbb{Z}_{p_1^{k_1}}^* \times \cdots \times \mathbb{Z}_{p_\ell^{k_\ell}}^*$$

For p an odd prime and $k \geq 1$,

$$\mathbb{Z}_{p^k}^*\cong \left(\mathbb{Z}_{p^{k-1}(p-1)}, +
ight)$$

For $k \geq 2$,

$$\mathbb{Z}_{2^k}^* \cong \mathbb{Z}_{2^{k-2}} \times \mathbb{Z}_2.$$

In particular, \mathbb{Z}_n^* is cyclic iff $n=1,2,4,p^k,2p^k$ for p an odd prime. Proof.

Example. $Gal(\mathbb{Q}(\zeta_5)/\mathbb{Q}) \subseteq (\mathcal{Z}_5^*) \subseteq (\mathcal{Z}_5)^*$ First ecapt of a cyclic Caldis grop of order 4, generated by 5: SE 12 SE Fix (<<,1>) =

Abelian extensions.

Definition. A Galois extension K/F is abelian if Gal(K/F) is abelian.

Theorem. Let G be a finite abelian group. Then there exist $n \in \mathbb{N}$ and $\mathbb{Q} \leq K \leq \mathbb{N}$ $\mathbb{Q}(\zeta_n)$ such that

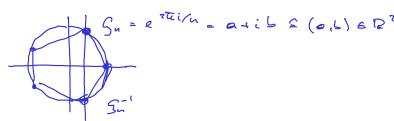
$$G \cong \operatorname{Gal}(K/\mathbb{Q}).$$

Roof: truey finds group embeds into some (2, ,.)

Kronecker-Weber Theorem. Every finite abelian extension K/\mathbb{Q} is contained in some cyclotomic extension of \mathbb{Q} .

Without proof. See algebraic number theory (class field theory).

Regular n-gons.



Recall. A regular n-gon can be constructed by straightedge and compass iff $[\mathbb{Q}(\operatorname{Re}(\zeta_n)):\mathbb{Q}]$ is a power of 2.

Let
$$a := \text{Re}(\zeta_n) = \frac{1}{2}(\zeta_n + \zeta_n^{-1})$$
 and $K := \mathbb{Q}(a)$. $m_{\zeta_n,K} = x^2 - 2ax + 1$.

Then
$$[\mathbb{Q}(\zeta_n):K]=2$$
 yields $[K:\mathbb{Q}]=\frac{\varphi(n)}{2}$.

Clauss- Wa-Gal Theorem. TFAE for $n \in \mathbb{N}$:

- (1) The regular n-qon can be constructed by straightedge and compass.
- (2) $\varphi(n)$ is a power of 2.
- (3) $n = 2^k p_1 \dots p_\ell$ for $k \in \mathbb{N}$ and distinct Fermat primes p_1, \dots, p_ℓ .

Definition. A Fermat number is of the form $2^{2^s} + 1$.