14.3 Finite fields.

For any prime p and $n \in \mathbb{N}$, the extension F_{p^n}/F_p is Galois.

Hence

(1) $n = [F_{p^n} : F_p] = |Gal(F_{p^n})|$

(2) Since $F_{p^n}^* = \langle \alpha \rangle$ is cyclic, also $F_{p^n} = F_p(\alpha)$ and there exists an irreducible $m_{\alpha,F_p}(x) \in F_p[x]$ of degree n.

Proposition. Gal $(F_{p^n}/F_p) = \langle \sigma_p \rangle$ for the Frobenius automorphism $\sigma_p \colon F_{p^n} \to F_{p^n}, x \mapsto x^p$.

Proof. | <G+> | = n by HW

Example. n = 12

<@>≥ 5⁶²

(G) (G²)

Fp. Tp2

Corollary. $F_{p^d} \leq F_{p^n}$ iff d|n.

Corollary. $x^{p^d} - x|x^{p^n} - x$ iff d|n.

? c{ HW

Corollary. $x^{p^n} - x$ is the product of all monic irreducible polynomials $f(x) \in F_p[x]$ with deg f|n.

Proof. Let for a Fp Ix] imednelde, monie, deg for = d, Let a such that for = 0.

1) Assurd In. Then Flox) = Food, the optibling field of x -x.

So food divides x 2 x and also x 2 -x by previous Cov.

2) Conversely assure for $|x|^{p^{n}} - x$.

Then $f_{p}(x) \in f_{p^{n}}$ yields de in by above (or.

Here ble inved factors of $x^{p^{n}} - x$ are exactly all the monic invod polynomials whose degree divides a Christian multiplicity I since $x ?^{n} - x$ is separable). IT

Example. For F_8/F_2 consider

 $x^{8} - x = \times (\times + 1) (\times^{C} + \times^{5} + - + \times + 1)$ $(\times^{5} + \times \times () (\times^{5} + \times^{6} + ()$

Corollary. The algebraic closure of F_p is

Proof. For
$$f_{7}^{n}$$
, $f_{7}^{m} \leq f_{7}^{m}$ (\sim, \sim)

The number of irreducible polynomials of degree n over F_p .

Number Theory: For $n \in \mathbb{N}$, the Möbius function is

$$\mu(n) := \begin{cases} (-1)^r & \text{if } n \text{ is the product of } r \text{ distinct primes,} \\ 0 & \text{if } n \text{ has a squared factor.} \end{cases}$$

For $f: \mathbb{N} \to \mathbb{R}$ and

$$g(n) := \sum_{d|n} f(d) \text{ for all } n \in \mathbb{N},$$

the Möbius inversion formula states:

$$f(n) = \sum_{d|n} \mu(d)g(\frac{n}{d})$$
 for all $n \in \mathbb{N}$.

Let $\psi(n) := |\{q(x) \in F_p[x] : q(x) \text{ monic, irreducible, } \deg q(x) = n\}.$ By the Corollary above

$$p^n = \sum_{d|n} d\psi(d).$$

By the Möbius inversion formula

$$n\psi(n) = \sum_{d|n} \mu(d) p^{n/d}$$

Example. For p = 2, n = 4

$$\Psi(4) = \frac{1}{4} \left[\mu(1) 2^{4/1} + \mu(2) \cdot 2^{4/2} + \mu(4) \cdot 2^{4/4} \right] \\
= \frac{1}{4} \left[16 - 4 \right] = 3$$