13.2 Algebraic extensions.

Question. Which finite extensions K/F are of the form F[x]/(p(x))?

Definition. $\alpha \in K$ is <u>algebraic</u> over F if $\exists p(x) \in F[x] \setminus \{0\}$: $p(\alpha) = 0$; else α is transcendental over F.

Example. π, e are transcendental over \mathbb{Q} . (land analytic proofs)

Proposition. Let $\alpha \in K$ be algebraic over F. Then

- (1) \exists unique monic irreducible $m_{\alpha,F}(x) \in F[x]$ with $m_{\alpha,F}(\alpha) = 0$;
- (2) $p(x) \in F[x]$ has root α iff $m_{\alpha,F}(x) \mid p(x)$.

Definition. $m_{\alpha,F}(x)$ above is the <u>minimal polynomial</u> for α over F. deg $m_{\alpha,F}(x)$ is the degree of α .

Example. $m_{\sqrt{2},\mathbb{O}}(x) = \checkmark^{?}$

Proof. 1) Leb g(x) ETIXI monic, of min degne c.l. g(x):0.

- Suppose e(x) = a(x) b(x) with deg a(x), deg b(x) < deg g(x).

 Then O = g(x) = a(x) b(x) inplies p(x) = 0 a b(x) = 0. If

 So g(x) is inveducible.
- For uniqueness end 2) leb puis cFtx] be such block p(x) = 0.

 Then p(x) = q(x) e(x) + T(x) for deg r < deg p.

 Then O = p(x) = q(x) e(x) + T(x)

 and Two by minimality eq e(x).

 Thus 8 | p. Uniquenus of g(x) follows given g(x) is maric.

Corollary. Let $F \subseteq K \subseteq L$ and $\alpha \in L$ algebraic over F. Then α is algebraic over K and $m_{\alpha,K}(x) \mid m_{\alpha,F}(x)$.

Corollary. Let α be algebraic over F. Then $F(\alpha) \cong F[x]/m_{\alpha,F}(x)$, $[F(\alpha):F] = \deg m_{\alpha,F}(x)$.

Proposition. α is algebraic over F iff $F(\alpha)/F$ is finite.

Proof. > by previous Con
{ Assume [tax: t] = n.

Then

I, x, x, --- x

is lin dependent over t, i.e. ao, -, an c t, notall 0, s.l.

Za: x' = 0.

Then par = Zai x' has x as vod. Here x is algebraic.

Definition. K/F is algebraic if every $\alpha \in K$ is algebraic over F.

Example. \mathbb{R}/\mathbb{Q} is not algebraic.

Corollary. If K/F is finite, then K/F is algebraic.

Proof. Every or e K is the world some tol of degree - [K:F]. [

Lagrange's Theorem for field extensions.

Theorem. For fields $F \subseteq K \subseteq L$

$$[L:F] = [L:K] \cdot [K:F].$$

Proof. Let B be a basis of Kover F C L over K.

Claim: BC: [bc [boB, ce C] is a bois for Love F.

Spaning: Les ech, e= Z g; c; far g; ck

= Z (bij bj) c; for Bij e F

Livea independence:

Example.
$$\sqrt{2} \notin \mathbb{Q}(\sqrt[3]{2})$$
 because $\mathbb{Q}(S) \notin \mathbb{Q}(\sqrt[3]{2})$ $\mathbb{Q}(S) : \mathbb{Q}(S) : \mathbb{Q}(S)$

Finitely generated algebraic extensions.

Definition. K/F is <u>finitely generated</u> if $\exists \alpha_1, \dots, \alpha_n \in K$ such tht $K = F(\alpha_1, \dots, \alpha_n)$.

Lemma. $F(\alpha, \beta) = (F(\alpha))(\beta)$

Proof. Bolhave minimal fields containing F, K, B.

Theorem. $[K:F] < \infty$ iff there exist algebraic $\alpha_1, \ldots, \alpha_n \in K$ such that $K = F(\alpha_1, \ldots, \alpha_n)$.

Proof. >> Assure [K: F] = n.

Lel x,,-, x, be abasis of K over F.

As in abare them, x,,-, x, are algebraic over F.

K = F (x,,-, xu).

€ Leb K = F (α, -, α, n) (or α, -, κ, α α βερυαίς.

For F; := F (α, -, α,) = Fi, (κ;)

F = F , ≤ F, ≤ -- ≤ Fn = K

So [(K: +] = [K: Fa-c]. [Fa-c: Fa-z] -- [Fc: +o] by Lagrange's Thu

Note: [Fi: Fin] = dec mailFin (x) & dec mailF(x).

Consequences.

Corollary. If α, β are algebraic over F, then also $\alpha \pm \beta, \alpha\beta, \alpha^{-1}$ (for $\alpha \neq 0$) are algebraic.

Proof. All are combained in
$$\overline{+}(\kappa, 3)$$
.

Corollary. Let K/F. The elements in K that are algebraic over F form a subfield of K.

Example. $\overline{\mathbb{Q}} := \{ \mathbf{k} \in \mathbb{C} \mid \alpha \text{ is algebraic over } \mathbb{Q} \}$ is called the <u>field of algebraic numbers</u>.

Corollary. If L is algebraic over K and K is algebraic over F, then L is algebraic over F.

Definition. The <u>composite field</u> K_1K_2 of subfields K_1, K_2 of L is the smallest subfield of L containing K_1, K_2 .

Example.
$$\mathbb{Q}(\sqrt{2})\,\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2},\sqrt[3]{2})$$
 has degree 6 one \mathbb{Q} .

Proposition. Let K_1, K_2 be finite extensions of F. Then

$$[K_1K_2:F] \le [K_1:F] \cdot [K_2:F]$$

with equality iff an F-basis for one field is linearly independent over the other field.

Corollary. If
$$gcd([K_1:F],[K_2:F])=1$$
, then
$$[K_1K_2:F]=[K_1:F]\cdot [K_2:F].$$
 Proof. $\mbox{ } \mbox{ }$