13.1 Fields and field extensions.

Question. If a polynomial $p(x) \in F[x]$ does not split into linear factors over F, can we find a 'minimal' field K containing F over which p(x) splits?

Example.

- Every $p(x) \in \mathbb{C}[x]$ splits in $\mathbb{C} = \mathbb{R}\{1, i\}$.
- Not every $p(x) \in \mathbb{Q}[x]$ splits in $\mathbb{Q}\{1,i\} \leq \mathbb{C}$. Extensions of \mathbb{Q} are ordered under inclusion. What does this ordered set look like?

Characteristic and prime subfield.

Every field F contains 1.

Definition. The *characteristic* of F, ch(F), is the smallest integer p > 0 such that $p \cdot 1 = 0$ if such a p exists; 0 otherwise.

The subfield of F generated by 1 is the smallest subfield of F, called the *prime* subfield.

Example.

$$\mathrm{ch}(\mathbb{F}_p)=\mathbb{P}$$
 for p p $\mathrm{ch}(\mathbb{R})=\mathbb{C}$

Theorem. The prime subfield of a field F is either isomorphic to \mathbb{Q} (and $\operatorname{ch}(F) = 0$) or isomorphic to \mathbb{F}_p (and $\operatorname{ch}(F) = p$) for some prime p.

Proof. (Z:1, +) is cyclic, hence isomorphic to Z or
$$\mathbb{Z}_n$$
 for some new. In the first cose, the F=0 and the prime field of F is the field of fractions of \mathbb{Z} , i.e. \mathbb{R} .

In the second case, suppose $n=a.b$.

Then $\mathcal{O}=n\cdot l=(al)\cdot(bl)$ implies $a=h$ or $b=n$.

Thus n is prime and $(\mathbb{Z}_n)+,\cdot$ is a field.

D

Note. if $\operatorname{ch}(F) = p > 0$, then pa = 0

Extensions.

Let $F \subseteq K$ be fields.

Then K is an F-vector space.

K is an <u>extension</u> of F, denoted K/F, of degree $[K:F] := \dim_F K$.

K/F is finite if K:F is finite.

Example.

$$\mathbb{C}/\mathbb{R}$$
 is a degree 2 (i.e. finite) extension \mathbb{R}/\mathbb{Q} is an injurible extension.

Polynomial extensions.

Let $p(x) \in F[x]$ be irreducible (prime). Then

- (1) (p(x)) is a maximal (prime) ideal in F[x].
- (2) K := F[x]/(p(x)) is a field.
- (3) The canonical projection $\pi \colon F[x] \to K$, $f \mapsto f + (p)$, yields an embedding

K from Gener Wonger

$$F \hookrightarrow K, \ a \mapsto \bar{a}.$$

So we may view K as extension of F.

(4) \bar{x} is a root of $p(y) \in K[y]$

Theorem. Let $p(x) \in F[x]$ be <u>irreducible</u> over F of degree n, let K := F[x]/(p(x)). Then

$$\bar{1}, \bar{x}, \bar{x}^2, \dots, \bar{x}^{n-1}$$

is a basis for K over F, i.e.,

$$K = \{a_0 + a_1 \bar{x} + \dots + a_{n-1} \bar{x}^{n-1} : a_0, \dots, a_{n-1} \in F\}.$$

Proof.

Then pex) | bo+6,x+-+ lan x" | yields bo+5,x-+ ban x"=0

since deg pex = n. So bo = - ban = 0.

Example. $p(x) = x^3 - 2$ is irreducible over \mathbb{Q} . \(\mathbb{L} := \Oix\) / (x³-2) is a field with \(\oix \):= \(\omega \tau \) (x³-2) \(\text{brack} \omega $\overline{X} \in K$ is a roof of P $P(X+(x^2-2)) = D(X) + (X^2-2) = 0$ in Kx3 = 2 mod pa) $L = \begin{cases} Q_0 + Q_1 \overline{x} + Q_2 \overline{x}^2 & Q_0, Q_1, Q_2 \in \mathbb{Q} \end{cases}$

Internal view.

For K/F and $\alpha, \beta, \dots \in K$,

$$F(\alpha, \beta, \dots)$$

denotes the smallest subfield of K containing F and α, β, \ldots , called the field generated by α, β, \ldots over F.

 $F(\alpha)$ is a simple extension of F; α is primitive for that extension.

Example. $\mathbb{C} = \mathbb{R}(i)$

Theorem. Let $p(x) \in F[x]$ be irreducible and K/F with $\alpha \in K$ such that $p(\alpha) = 0$. Then

$$F(\alpha) \cong F[x]/(p(x)).$$

Note. Any extension of F, which contains some root of p(x), has a subfield isomorphic to F|x|/(p(x)).

Hence F[x]/(p(x)) is the smallest extension of F containing a root of p(x).

(arsider the ring hom

y: FIX] -> + (oc)

f(x) 1-> f(x) Proof.

> Then p(x) E loe p. Since p is irreducible, (pa) is maximal. So eible, her q= (700) or her q= Fix].

The latter is i - possible since op (F) = F = 0.

Hera larg = (pa).

4 (Flor) = Fix] (pa) is a field combaining Fond x.

So $\varphi(\overline{+i}\overline{s}) = \overline{+}(x)$ and bluthon follows from blue 1st less them.

Ex. continued. P(x) = x3-2 in C has voots \$2, 32 e 2013, \$12, 4111/5 Then Q(3/2) = Q(1/2 e 1/2) as fields (or le=1,2.