12.2 Canonical forms for linear maps.

Recall. Assume F^n has a basis B of eigenvectors of $\varphi \in \operatorname{End}_F(F^n)$.

- Then $M_B^B(\varphi)$ is a diagonal matrix.
- $M_C^C(\varphi)$ is diagonalizable for any basis C.

Question. What may prevent $A \in M_{n \times n}(F)$ to be diagonalizable?

(1) The characteristic polynomial $c_A(x) := \det(xI - A)$ does not have enough roots (eigenvalues of A) in F.

Ex.
$$A = \begin{pmatrix} 0 - 1 \\ 1 & 0 \end{pmatrix}$$
 $C_A(x) = x^2 + ($ has no rooks in R , only i, -i.e. C So A counch be diagonalized over R , $A \cap (i \circ i)$ in C .

(2) The dimension of the eigenspace $\{v \in F^n : Av = \lambda v\}$ for the eigenvalue λ is too small.

$$\exists x \quad \exists = \begin{pmatrix} 21 \\ 02 \end{pmatrix} \quad e_{\mathcal{B}}(x) = (x \cdot 2)^2$$

$$d_{im} \, \mathcal{N}_{ul}(2\overline{1} - \overline{B}) = 1$$

Goal. Block-diagonalize A.

Let V be a finite dimensional vector space over a field F and $\varphi \in \operatorname{End}_F(V)$. Make V into an F[x]-module V_{φ} by

$$xv := \varphi(v) \text{ for } v \in V.$$

Recall: F[x] is a PID.

- (1) Rational canonical form of φ uses the invariant factors of V_{φ} .
- (2) Jordan canonical form of φ uses the elementary divisors of V_{φ} .

Rational canonical form.

$$V_{\varphi} \cong F[x]/(a_1(x)) \oplus \cdots \oplus F[x]/(a_k(x)) \oplus F[x]^r$$
 where $a_1(x) \mid a_2(x) \mid \ldots \mid a_k(x)$ and $r \geq 0$.

Note.

- (1) $\dim_F V < \infty$ implies r = 0.
- (2) $a_i(x)$ are uniquely determined if we require them to be monic. (Leading coefficienty (2)
- (3) $\operatorname{Ann}_{F[x]}(V_{\varphi}) = (a_k(x));$ $m_{\varphi}(x) := a_k(x) \text{ is the } \underline{minimal \ polynomial of } \underline{\varphi}.$ $\overline{m_{\varphi}(\varphi) = 0 \text{ in } \operatorname{End}_F(\mathcal{V})}$

Companion matrices.

Consider a single summand for $a(x) = b_0 + b_1 x + \cdots + b_{d-1} x^{d-1} + x^d$.

$$F[x]/(a(x)) \cong F\{1, x, \dots, x^{d-1}\}$$

as F[x]-modules with action

$$x \cdot x^{i} = \begin{cases} x^{i+1} & \text{if } i < d-1, \\ -b_0 - b_1 x - \dots - b_{d-1} x^{d-1} & \text{if } i = d-1. \end{cases}$$

With respect to $B = (1, x, \dots, x^{d-1})$, the <u>companion matrix $C_{a(x)}$ of a(x) is</u>

$$C_{a(x)} := M_B^B(\varphi|_{F[x]/(a(x))}) = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -b_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -b_{d-2} \\ 0 & \cdots & 0 & 1 & -b_{d-1} \end{pmatrix} \qquad \begin{array}{c} \text{clear polynomial} \\ \text{of } C_{\text{ace}}, \text{ is also} \\ \text{(160)} \end{array}$$

The rational canonical form of $\varphi \in \operatorname{End}_F(V)$ is the block diagonal matrix

$$\begin{pmatrix} C_{a_1(x)} & & & 0 \\ & C_{a_2(x)} & & \\ & & \ddots & \\ 0 & & & C_{a_k(x)} \end{pmatrix} \quad \textbf{e} \quad \texttt{M}_{\mathsf{MFL}} \ (\textbf{F})$$

for the invariant factors $a_1(x) | a_2(x) | \dots | a_k(x)$ of V_{φ} .

Theorem. Let $\varphi \in \operatorname{End}_F(V)$. Then

- (1) φ has a unique rational canonical form; $T_3^{B}(\varphi) = Talianal can form φ$
- (2) the rational canonical form determines φ up to similarity.

Note. All concepts and results transfer to $n \times n$ -matrices. $\vee : \hat{t} \to \hat{t} \to \lambda x$

Theorem. Let $A \in M_{n \times n}(F)$.

- (1) The characteristic polynomial $c_A(x)$ is the product of all invariant factors of A.
- (2) (Cayley-Hamilton Theorem) The minimal polynomial $m_A(x)$ divides $c_A(x)$.
- (3) $c_A(x)|m_A(x)^l$ for some $l \geq 1$.

(2) implies
$$C_A(A) = 0$$

Converting $A \in M_{n \times n}(F)$ to rational canonical form.

Make $V := F^n$ into an F[x]-module V_A by xv = Av for $v \in F^n$. Then

$$V_A \cong F[x]/(a_1(x)) \oplus \cdots \oplus F[x]/(a_k(x))$$

with invariant factors $a_1(x) | a_2(x) | \dots | a_k(x)$ of A.

Note. The proof of this Structure Theorem for V_A is constructive:

 V_A is a homomorphic image of the free module $F[x]^n$ and has a finite presentation

$$V_A = \langle x_1, \dots, x_n : (xI - A^T)(x_1, \dots, x_n)^T = 0 \rangle$$

Transfer $xI - A^T$ (equivalently xI - A) into a diagonal matrix (its <u>Smith normal</u> $Y: FixI \to V_A$ $V_A = \langle x_1, \dots, x_n : (xI - A^T)(x_1, \dots, x_n)^T = 0 \rangle.$ $V_A = \langle x_1, \dots, x_n : (xI - A^T)(x_1, \dots, x_n)^T = 0 \rangle.$ $V_A = \langle x_1, \dots, x_n : (xI - A^T)(x_1, \dots, x_n)^T = 0 \rangle.$ $V_A = \langle x_1, \dots, x_n : (xI - A^T)(x_1, \dots, x_n)^T = 0 \rangle.$ form)

 $\left(\begin{array}{ccc} & \ddots & & \\ & 1 & & \\ & & a_1(x) & & \\ & & & \ddots & \end{array}\right).$

with $a_1(x)|a_2(x)...|a_k(x)$ the invariant factors of A.

For that we use the following row and column operations:

- (1) swapping two rows (columns),
- (2) adding a multiple of a row (column) to another,
- (3) multiplying a row (column) by a unit in F[x].

Thus the invariant factors of A are the non-unit entries of the Smith normal form of xI - A.

Example. (Dummit & Foote, p 482)

Are the following similar over \mathbb{Q} ?

$$A = \begin{pmatrix} 2 & -2 & 14 \\ 0 & 3 & -7 \\ 0 & 0 & 2 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{pmatrix}$$

$$c_A(x) = (x \cdot 2)^* (x - 3) = c_C(x)$$

$$c_A(x) = (\kappa \cdot 7)^{\prime} (x - 3) = c_{\alpha}(\kappa)$$

min polynomials eve either (x-2)(x-3) or (x-2) (x-3)

Example. (Dummit & Foote, p 485)

Determine the rational canonical form of

$$A = \begin{pmatrix} 1 & 2 & -4 & 4 \\ 2 & -1 & 4 & -8 \\ 1 & 0 & 1 & -2 \\ 0 & 1 & -2 & 3 \end{pmatrix}$$

| Invariant factors
$$e_{i}(k) = Q_{i}(k) = (k-1)^{2} = m_{A}(k)$$

 $V_{A} = Q_{i}(k) = Q_{i}(k) = (k-1)^{2} = m_{A}(k)$
 $V_{A} = Q_{i}(k) = Q_{i}(k) = (k-1)^{2} = m_{A}(k)$
 $V_{A} = Q_{i}(k) = Q_{i}(k) = (k-1)^{2} = m_{A}(k)$
 $V_{A} = Q_{i}(k) = Q_{i}(k) = (k-1)^{2} = m_{A}(k)$
 $V_{A} = Q_{i}(k) = Q_{i}(k) = Q_{i}(k) = (k-1)^{2} = m_{A}(k)$
 $V_{A} = Q_{i}(k) = Q_{i}(k) = Q_{i}(k) = (k-1)^{2} = m_{A}(k)$
 $V_{A} = Q_{i}(k) = Q_{i}(k) = Q_{i}(k) = (k-1)^{2} = m_{A}(k)$

The rational canonical four of A is (0.100)