Coal: Structure theory for modules one-PID, e.g. Z, RIXT

12.1 Noetherian rings and modules.

Let R be a ring with 1.

Definition. An R-module is <u>Noetherian</u> if it satisfies the <u>ascending chain condition</u> (ACC) on submodules: every strictly increasing chain of submodules is finite.

A ring R is (left) Noetherian if R is Noetherian as left R-module (ACC on left ideals).

Typicα Example.

un Woelhenian Rixinxxx. -] since (xi) & (xixx) & . -

Theorem. TFAE:

- (1) M is Noetherian.
- (2) Every nonempty set S of submodules of M has a maximal member (with respect to \subseteq).
- (3) Every $N \leq M$ is finitely generated.

Proof. 1) => 2) Let M. ES # \$.

Regeal. Since Ma Noetherian, M. & M. & Stabilizes in finishly many steps with a maximal M. ES.

2) => 3) Les S:= { N' & N : N' is fin generaled } (Or N & M.

By 2) S has a max element N' & N.

Suppose N" + N. Then IXENIN" and N°+(x) is fin generaled contradicting the maximality of N". Here N= N" is fin generaled.

3) => 1) Let M. = M2 = - = M.

By 3) N is (in generaled, say N = R [an-, R m]

Then INCN: QU-1 Que My.

 \supset

Ca. Every PID a Moelherian

Proof by 3) of the Thin alone for the regular R-module. Submodules of the regular R-mod are ideds of R, Lence of the form Ra for some RER. **Recall.** For any $n \geq 0$ there exists a <u>free R-module</u> $F_R(x_1, \ldots, x_n)$ over the free generators x_1, \ldots, x_n satisfying

- (1) the Universal Property for Maps: for any R-module M and $m_1, \ldots, m_n \in M$ there exists a unique R-module homomorphism $\Phi \colon F_R(x_1, \ldots, x_n) \to M$ with $\Phi(x_i) = m_i$ for all $i \leq n$;
- (2) every n-generated module M is a homomorphic image of $F_R(x_1,\ldots,x_n)$;
- (3) $F_R(x_1,\ldots,x_n)=Rx_1\oplus\cdots\oplus Rx_n\cong R^n$.

Lemma. If the ring R is Noetherian, then the R-module R^n is Noetherian for all $n \geq 0$.

Proof. Show that every TIER" is fingereaded by induction on u.

n=0,1 by assumption.

Carider T: Ru > R, (x1) -1 x1 12 x1

For MSR", then TIn: n-> R calisties

- Kirlar II / ~ submodule of Rhi, fingeneraled by induction assupplier
- H/KF tt (M) & R, doo finguerabed

Combining these yields that I is fingenerated.

Les K= R[an-iam]

M/K - R [b, + K, - 2 be + k] (lein. H = R & all - an , b, = - 2 be]

Theorem. For a ring R TFAE:

- (1) R is a Noetherian ring.
- (2) Every finitely generated R-module is Noetherian.

Proof. 2) => 1) since is openaled by (.

1) => 2) Leb M be a fi- perivabed R. mod.

Then IneWould deal Misahow inege of R", MER"/K.

By Legrevious Lemna Ra a Noetherian

So très Noedheviar by ble Correspondence Thim

0

D

Presentations.

Definition. Let M be an R-module. If $M \cong F/K$ for some finitely generated free module $F := F_R(x_1, \ldots, x_n)$ and a finitely generated submodule K := $\langle w_1, \ldots, w_m \rangle$, we say M has the finite presentation

$$M = \langle x_1, \dots, x_k \mid w_1 = 0, \dots, w_m = 0 \rangle$$
 (M is finitely presented for short).

For each $i \leq m$ we have $a_{ij} \in R$ such that

$$w_i = \sum_{j=1}^n a_{ij} x_j.$$

Let $A = (a_{ij}) \in M_{m \times n}(R)$. Then we can rewrite the presentation of $M \cong F/K$ as $M = \langle x_1, \dots, x_k \mid A \cdot (x_1, \dots, x_n)^T = 0 \rangle.$

Corollary. Every finitely generated module M over a Noetherian ring R is finitely presented.

Running elaple:
$$R = \mathbb{Z}$$

$$F = \mathbb{Z}_{\kappa_1} \oplus \mathbb{Z}_{\kappa_2} \subseteq \mathbb{Z}^2$$

$$K = \left\langle \begin{array}{c} 36 \times_2 \\ \text{W}_1 \end{array} \right\rangle \left(\begin{array}{c} 6 \times_1 + 6 \times_2 \\ \text{W}_2 \end{array} \right) \left(\begin{array}{c} 4 \times_1 + 10 \times_2 \\ \text{W}_3 \end{array} \right)$$

$$M = \frac{1}{2} \left(\begin{array}{c} 6 \times_1 + 6 \times_2 \\ \text{W}_1 + 10 \times_2 \end{array} \right) \left(\begin{array}{c} 36 \times_2 = 0 \\ \text{W}_1 + 10 \times_2 = 0 \end{array} \right)$$

$$\text{Telahians}$$

$$\left(\begin{array}{c} 0 & 36 \\ C & C \\ 4 & 10 \end{array} \right) \left(\begin{array}{c} \kappa_1 \\ \kappa_2 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$$

Lemma (Changing presentations). Let $A \in M_{m \times n}(R)$ and

$$M = \langle x_1, \dots, x_n \mid A \cdot (x_1, \dots, x_n)^T = 0 \rangle$$

be a finitely presented R-module. Let $P \in M_{m \times m}(R)$ and $Q \in M_{n \times n}(R)$ be invertible. Then

$$M = \langle y_1, \dots, y_n \mid PAQ \cdot (y_1, \dots, y_n)^T = 0 \rangle$$

is another presentation of M.

Proof. Note $M \cong F/K$ for

$$F := F_R(x_1, ..., x_n)$$

$$(w_1, ..., w_m)^T := A \cdot (x_1, ..., x_n)^T$$

$$K := \langle w_1, ..., w_m \rangle$$

$$(y_1, ..., y_n)^T := Q^{-1} \cdot (x_1, ..., x_n)^T$$

Claim 1. F is free over y_1, \ldots, y_n .

- y_1, \ldots, y_n generates F since $Q(y_1, \ldots, y_n)^T = (x_1, \ldots, x_n)^T$.
- To show the universal property, let N be an R-module and $v_1, \ldots, v_n \in N$. Since F is free over x_1, \ldots, x_n , there exists a homomorphism

$$\varphi \colon F \to N \text{ with } (x_1, \dots, x_n)^T \mapsto Q(v_1, \dots, v_n)^T \text{ (componentwise)}.$$

Then

$$(y_1, \dots, y_n) = Q^{-1}(x_1, \dots, x_n)^T \xrightarrow{\varphi} Q^{-1}Q(v_1, \dots, v_n)^T = (v_1, \dots, v_n)^T.$$

We proved Claim 1 and that $(x_1, \ldots, x_n)^T \to (y_1, \ldots, y_n)^T$ extends to an automorphism of F.

Let

$$(v_1, \dots, v_m)^T := P(w_1, \dots, w_m)^T$$

Claim 2. $K = \langle v_1, \dots, v_m \rangle$.

- \supseteq is clear.
- \subseteq follows since $P^{-1}(v_1,\ldots,v_m)^T=(w_1,\ldots,w_m)^T$.

This proves Claim 2. Thus

$$M \cong F_R(y_1, \ldots, y_n) / \langle v_1, \ldots, v_m \rangle$$

and moreover

$$(v_1, \dots, v_m)^T = P(w_1, \dots, w_m)^T = PA(x_1, \dots, x_n)^T = PAQ(y_1, \dots, y_n)^T$$

 \Box

E : 0 - 0

Theorem. (Row reduction in PIDs) Let R be a PID. For every $A \in M_{m \times n}(R)$ there exist invertible $P \in M_{m \times m}(R)$ and $Q \in M_{n \times n}(R)$ such that

D = PAQ is a diagonal matrix with diagonal entries $a_1|a_2|\dots|a_l$, i.e. (2.) ≥ 1 for $l := \min(m, n)$.

Proof. We find D using the following row operations on A that can be obtained by multiplication with invertible $m \times m$ matrices on the left.

(R1) Switching rows i and j of A. For a permutation matrix $S := E_{ij} + E_{ji} + \sum_{k \neq i,j} E_{kk}$ compute SA.

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} -\alpha_1 & -\alpha_2 & -\alpha_2 & -\alpha_2 \\ -\alpha_2 & -\alpha_2 & -\alpha_2 & -\alpha_2 \end{pmatrix} = \begin{pmatrix} -\alpha_1 & -\alpha_2 & -\alpha_2 \\ -\alpha_2 & -\alpha_2 & -\alpha_2 & -\alpha_2 \\ -\alpha_2 & -\alpha_2 & -\alpha_2 & -\alpha_2 \end{pmatrix}$$

(R2) Add c times row i to row j of A. For $T := I_m + cE_{ji}$ compute TA.

$$1 \Rightarrow \begin{pmatrix} 1 \\ c \\ -\alpha_{i} \end{pmatrix} \cdot \begin{pmatrix} -\alpha_{i} \\ -\alpha_{i} \end{pmatrix} = \begin{pmatrix} -\alpha_{i} \\ -\alpha_{i} \\ -\alpha_{i} \end{pmatrix}$$

(R3) Scale row i and add a multiple of row j to replace a_{ik} by $d := \gcd(a_{ik}, a_{jk})$ if $d \neq 0$.

Let
$$\begin{pmatrix} u_{ii} & u_{ij} \\ u_{ji} & u_{jj} \end{pmatrix}$$
 such that (a) $d = u_{ii}a_{ik} + u_{ij}a_{jk}$ and (b) $u_{ii}u_{jj} - u_{ij}u_{ji} = 1$.

Since R is a PID, we have $u_{ii}, u_{ij} \in R$ satisfying (a); moreover $gcd(u_{ii}, u_{ij}) = 1$ since $d \neq 0$. Hence we find u_{jj}, u_{ji} satisfying (b).

For
$$U := u_{ii}E_ii + u_{ij}E_{ij} + u_{ji}E_{ji} + u_{jj}E_{jj} + \sum_{k \neq i,j} E_{kk}$$
 compute UA .

Claim. Applying row operations (R1)-(R3) and corresponding column operations (C1)-(C3) (via multiplications with invertible $n \times n$ matrices on the right) A can be transformed into a diagonal matrix D with diagonal entries $a_1|a_2|\dots|a_l$.

Switching rows and columns if necessary we may assume that $a_{11} \neq 0$. First transform A until a_{11} has as few prime factors as possible:

- (1) For $k \leq m$, if a_{11} does not divide a_{k1} , let $d := \gcd(a_{11}, a_{k1}) \neq 0$ and use (R3) to get a new matrix B with $b_{11} = d$. Note that b_{11} has fewer prime factors than a_{11} .
- (2) Similar for a_{1k} .

After finitely many step we have a new matrix A such that $a_{11} \mid a_{i1}, a_{1j}$ for all i, j.

Executionald:
$$A = \begin{pmatrix} 0 & 36 \\ C & 6 \\ \hline 4 & 10 \end{pmatrix} \xrightarrow{R_1} \begin{pmatrix} L_1 & 10 \\ G & G \\ \hline 9 & 56 \end{pmatrix} = (-1) 4 + 1 \cdot G$$

$$\begin{array}{c} R_2 \\ - > \\ G \\ G \\ \end{array}$$

$$\begin{array}{c} R_3 \\ - > \\ \end{array}$$

$$\begin{pmatrix} 2 - 4 \\ G \\ G \\ \end{array}$$

(3) Using (R2) and (C2) we can now transform A into a block diagonal matrix

$$\begin{pmatrix} a_{11} & 0 \\ 0 & A' \end{pmatrix}.$$

(4) If a_{11} does not divide a_{ij} for some i, j, add row i to row 1 by (R2) and go to step (2) to further reduce the number of prime factors of a_{11} .

Since a_{11} only has finitely many factors, after finitely many steps we have a matrix $A = \begin{pmatrix} a_{11} & 0 \\ 0 & A' \end{pmatrix}$ such that $a_{11}|a_{ij}$ for all i, j.

Repeat the process for the $(m-1) \times (n-1)$ -matrix A' to get the Claim. Since the row and column operations were obtained by multiplication with invertible matrices, we have D = PAQ as required.

Corollary. Let R be a PID. Every submodule of the free module R^n of rank n is a free module of rank $\leq n$.

Proof. Let $K \leq \mathbb{R}^n$. Then K is finitely generated, say $K = \langle w_1, \dots, w_m \rangle$ where $(w_1, \dots, w_m)^T = A \cdot (x_1, \dots, x_n)^T$

for some $A \in M_{m \times n}(R)$.

By the previous Theorem (row reduction) and Lemma (changing presentation) we obtain free generators y_1, \ldots, y_n for R^n and generators v_1, \ldots, v_m for K such that

$$(v_1, \ldots, v_m)^T = PAQ(y_1, \ldots, y_n)^T = D(y_1, \ldots, y_n)^T = (a_1y_1, \ldots, a_ly_l, 0, \ldots, 0)^T$$

Then $K = Ra_1y_1 \oplus \cdots \oplus Ra_ly_l \cong Ra_1 \oplus \cdots \oplus Ra_l$ since y_1, \ldots, y_n is a basis. Since $Ra_i \cong R$ if $a_i \neq 0$ the result follows.

The Structure Theorem for finitely generated modules over PIDs.

Let R be a PID.

Structure Theorem (Invariant Factor Form). Let M be a finitely generated R-module for a PID R. Then

$$M \cong R/(a_1) \oplus \cdots \oplus R/(a_k) \oplus R^r$$

where $k, r \geq 0$, $a_1, \ldots, a_k \in R$ are neither 0 nor a unit and $a_1|a_2|\ldots|a_k$. a_1, \ldots, a_k are the invariant factors of M.

Note. This decomposition of M is unique up to isomorphism (see below), i.e., if also

$$M \cong R/(b_1) \oplus \cdots \oplus R/(b_l) \oplus R^s$$

for $l, s \ge 0, b_1, \ldots, b_l \in R$ neither 0 nor a unit and $b_1 | b_2 | \ldots | b_l$, then r = s, k = l and $(a_i) = (b_i)$ for all $i \le k$.

Hence the invariant factors are unique up to multiplication with units.

Proof. Since R is Noetherian, M has a finite presentation. Apply a change of presentation with invertible matrices P, Q and diagonal D as in the previous Theorem to get

$$M = \langle y_1, \dots, y_n \mid a_1 y_1 = 0, \dots, a_l y_l = 0 \rangle$$

with $a_1|a_2|\dots|a_l$.

Set $a_{l+1} := \dots a_n := 0$ if n > l to get

$$M = \langle y_1, \dots, y_n \mid a_1 y_1 = 0, \dots, a_n y_n = 0 \rangle = R y_1 \oplus \dots R y_n \cong R/(a_1) \oplus \dots \oplus R/(a_n).$$

If a_i is a unit, then $Ry_i \cong R/(a_i) \cong 0$ can be omitted.

If
$$a_i = 0$$
, then $Ry_i \cong R/(a_i) \cong R$.

Primary Decomposition Theorem. Let M be a torsion R-module for a PID R with annihilator (a) where

$$a = p_1^{\alpha_1} \dots p_n^{\alpha_n}$$

for distinct primes $p_1, \ldots, p_n \in R$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{N}$. Then

$$M \cong M_1 \oplus \cdots \oplus M_n$$

where $M_i := \{ m \in M \mid p_i^{\alpha_i} m = 0 \}$ is the p_i -primary component of M.

Proof. Exercise 10.3.18.

Decomposing $R/(a_i)$ into its primary components yields

Structure Theorem (Elementary Divisor Form). Let M be a finitely generated R-module for a PID R. Then

$$M \cong R/(p_1^{\alpha_1}) \oplus \cdots \oplus R/(p_n^{\alpha_n}) \oplus R^r$$

where $p_1, \ldots, p_n \in R$ are (not necessarily distinct) primes, $\alpha_1, \ldots, \alpha_n, r \in \mathbb{N}$. $p_1^{\alpha_1}, \ldots, p_n^{\alpha_n}$ are the elementary divisors of M.

Structure Theorem (Uniqueness). Let M, N be a finitely generated R-modules for a PID R. TFAE:

- (1) $M \cong N$
- (2) M, N have the same free rank and invariant factors.
- (3) M, N have the same free rank and elementary divisors.

Proof Sketch.

For $(1) \Rightarrow (3)$ we need

Lemma. For a prime $p \in R$, let F := R/(p). Then

- (1) $R^n/(p)R^n \cong F^n$
- (2) $R/(p^{\alpha})/pR/(p^{\alpha}) \cong F$

Assume $M \cong N$. Then

- Their torsion parts and their complements are isomorphic. Hence their free ranks are equal by (1) of the Lemma.
- Their p-primary components are isomorphic for every prime p, say with annihilator (p^{α}) . Induct on α and use (2) of the Lemma to obtain that their elementary divisors are the same.