Math 6010 - Assignment 12

Due April 27, 2019

These problems are meant to introduce problems that are complete for various complexity classes. Less formal proofs suffice.

(1) The *Quantified Boolean Formula Problem* QBF asks whether a given quantified sentence

 $\exists x_1 \ \forall x_2 \ \exists x_3 \ \forall x_4 \dots \ \Phi(x_1, \dots, x_n)$

with Φ in \wedge, \vee and ' is true. Hence QBF (sometimes also called TQBF or QSAT) generalizes SAT.

Argue that QBF is in PSPACE. Actually QBF is typical PSPACE-complete problem.

(2) Argue that deciding the following is in EXPTIME:

Input: code $\sharp(M)$ for a DTM M, $n \in \mathbb{N}$ in binary

Question: Does M halt on empty input in $\leq n$ steps?

Actually whether a DTM halts in $\leq n$ steps is a typical EXPTIME-complete problem.

Hint: Measure the complexity in $\log n$. The size of $\sharp(M)$ can be neglected.

(3) Argue that the previous problem for n given in unary is in P. Actually this is a typical problem that is complete in P for NC-reductions (intuitively "probably not parallelizable").