Intermediate Complexity

Peter Mayr

Computability Theory, April 26, 2021

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Recall

Polytime reductions \leq_m^p induce an equivalence relation on problems in NP:

A and B are equivalent if $A \leq_m^p B$ and $B \leq_m^p A$.

Then

- P ... equivalence class of the easiest problems in NP
- ▶ NP-complete ... class of the hardest problems in NP

Question

Is there anything in between (assuming $P \neq NP$)?

Ladner's Theorem (1975)

Assume $P \neq NP$. Then there exists $A \in NP$ that is neither in P nor NP-complete.

Proof.

Consider DTMs over $\Sigma = \{0, 1\}.$

- Let M₁, M₂,... be an enumeration of DTMs deciding the languages in P such that M_i runs in time nⁱ.
- Let f₁, f₂,... be an enumeration of functions such that f_i(x) is computable in time |x|ⁱ.

Blowing holes in SAT:

Define A using a function $f: \mathbb{N} \to \mathbb{N}$ as

 $A := \{x : x \in SAT \text{ and } f(|x|) \text{ is even} \}.$

Definition of f by DTM M

On input n in unary, compute f(n) inductively using 2 stages. Each stage takes n steps.

Initialize f(0) = f(1) := 2.

Stage 1: Compute $f(0), f(1), \ldots$ until *n* steps are over.

Suppose the last value M computed was f(m) = k.

Stage 2:

- If k = 2i, search for x ∈ {0,1}* in lexicographical order witnessing L(M_i) ≠ A, i.e.,
 - 1. M_i accepts x and $(x \notin SAT \text{ or } f(|x|) \text{ is odd})$, or

2. M_i rejects x and $(x \in SAT \text{ and } f(|x|) \text{ is even})$.

If M finds such x in $\leq n$ steps, f(n) := k + 1; else f(n) := k.

If k = 2i + 1, search for x ∈ {0,1}* in lexicographical order witnessing f_i does not reduce SAT to A, i.e.

- 1. $x \in SAT$ and $(f_i(x) \notin SAT$ or $f(|f_i(x)|)$ is odd), or
- 2. $x \notin SAT$ and $(f_i(x) \in SAT$ and $f(|f_i(x)|)$ is even).

If such x is found in $\leq n$ steps, f(n) := k + 1; else f(n) := k.

Runtime of M

- By construction f(n) is computed in time O(n) (in Stage 2, x ∈ SAT is checked by a DTM that takes ≤ n steps).
- The time counter adds a factor log(n) (cf. Time Hierarchy Theorem).

Overall M computes f(n) in polynomial time in n.

Thus $A = \{x : x \in SAT \text{ and } f(|x|) \text{ is even} \}$ is in NP.

Claim: $A \notin P$

- Suppose otherwise that $i \in \mathbb{N}$ is minimal such that $A = L(M_i)$.
- Then for k = 2i Stage 2 of M never finds x witnessing L(M_i) ≠ A.
- ▶ Hence *f* is eventually constant 2*i*.
- Since f(n) is odd for only finitely many n ∈ N, A = L(M_i) and SAT differ only in a finite initial segment.
- Then SAT $\in P$ contradicts the assumption $P \neq NP$.

Claim: A is not NP-complete

- Suppose otherwise that *i* ∈ N is minimal such that *f_i* reduces SAT to *A*.
- Then for k = 2i + 1 Stage 2 of M never finds x witnessing x ∈ SAT but f_i(x) ∉ A (or conversely).
- Hence f is eventually constant 2i + 1.
- Since f(n) is even for only finitely many n ∈ N, A is finite and in P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Then SAT $\in P$ contradicts the assumption $P \neq NP$.

Note

- Ladner's Theorem extends to yield an infinite hierarchy of intermediate problems between P and NP-complete.
- ▶ No "natural" problems of intermediate complexity are known.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fixed template Constraint Satisfaction Problems (CSP) form a large natural subclass of NP with P/NP-complete dichotomy (Bulatov, Zhuk 2017).

CSP(H) for a fixed digraph H: Input: digraph G Question: Is there a homomorphism $G \rightarrow H$?

Possibly NP-intermediate problems

Factoring (decision version)

Given m < n, does *n* have a factor *d* with 1 < d < m?

- ▶ in NP: yes-instances are certified by such a factor d
- ▶ in co-NP: no-instances are certified by prime factorization of *n*
- in BQP (bounded-error quantum polynomial time): solvable by a quantum computer in polynomial time with an error probability of at most 1/3 (Shor 1994)

Discrete Logarithm (decision version)

Given prime p, generator $a \in \mathbb{Z}_p^*, b \in \mathbb{Z}_p^*$ and $m \in \mathbb{N}$, is there $x \leq m$ such that

$$a^{x} = b$$
 in \mathbb{Z}_{p}

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Graph Isomorphism

Given graphs G, H, are they isomorphic?

quasi-polynomial algorithm 2^{O((log n)^k)} (Babai 2015)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00