More NP-complete problems

Peter Mayr

Computability Theory, April 23, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Cliques

- K_n = ({1,...,n}, ≠) ... complete (undirected) graph on *n*-vertices
- A graph G has an *n*-clique if K_n embeds into G.
- CLIQUE := {(G, n) : G is a graph with n-clique}

Theorem CLIQUE is NP-complete.

Proof.

 $CLIQUE \in NP$ since a guessed *n*-clique can be verified in polynomial time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Claim: 3-SAT \leq_m^p CLIQUE

Given a 3-SAT instance

$$\Phi = (a_1 \vee b_1 \vee c_1) \wedge \cdots \wedge (a_n \vee b_n \vee c_n)$$

with literals a_i, b_i, c_i .

For the reduction construct a graph G with

- ▶ 3*n* vertices labelled $a_1, b_1, c_1, \ldots, a_n, b_n, c_n$
- edges between any 2 vertices except within any triple a_i, b_i, c_i representing a clause of Φ and between a variable and its negation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Φ with 3*n* literals yields a graph with 3*n* vertices in polytime. Example: $\Phi = (x_1 \lor x_1 \lor x_2) \land (x'_1 \lor x'_2 \lor x'_2) \land (x'_1 \lor x_2 \lor x_2)$

Claim: Φ is satisfiable iff G has an *n*-clique

 \Rightarrow :

- Assume Φ has a satisfying assignment.
- In each triple a_i, b_i, c_i of G choose a vertex corresponding to a true literal in this satisfying assignment.
- ▶ These *n* vertices are each pairwise connected, hence a clique.

⇐:

- ► Assume *G* has an *n*-clique.
- Then any 2 vertices in that clique are in distinct clauses.
- Assign truth values to variables in Φ such that each literal labelling a vertex in the clique is true (possible since x_j, x'_j are not connected).

Since each clause contains a vertex from the clique, this assignment satisfies Φ.

Graph coloring

- A graph G is n-colorable if its vertices can be colored in n colors such that any adjacent vertices have distinct colors.
- Equivalently, G is n-colorable iff there exists a homomorphisms $G \rightarrow K_n$.

• *n*-Coloring := {
$$G$$
 : G is *n*-colorable}.

Theorem

3-Coloring is NP-complete.

Proof.

3-Coloring \in NP since a guessed coloring can be verified in polynomial time.

Claim: 3-SAT \leq_m^p 3-Coloring Given a 3-SAT instance

$$\Phi = (a_1 \lor b_1 \lor c_1) \land \cdots \land (a_n \lor b_n \lor c_n)$$

with literals a_i, b_i, c_i .

Construct G that is 3-colorable iff Φ is satisfiable as follows:

Truth assignments of x₁,..., x_k correspond to colors 0, 1 of vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For each clause a_i ∨ b_i ∨ c_i connect the vertices corresponding to a_i, b_i, c_i by a gadget graph implementing "or".

Further NP-complete problems (Karp, 1972)

SAT

Circuit Satisfiability Problem Given a Boolean circuit, is there an assignment of inputs that yields output 1?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- CLIQUE
- Graph k-Coloring for $k \geq 3$
- Graph Homomorphism Problem Given graphs G, H, is there a homomorphism $G \rightarrow H$?
- Hamiltonian Cycle for digraphs
- Travelling Salesman Problem

Exact Cover Given subsets A₁,..., A_n ⊆ X, is X the disjoint union of some A_i?

- Knapsack (Subset Sum) Given integers a₁,..., a_n and s ∈ Z, does a non-empty subset of the a_i sum to s?
- MaxCut

Given a graph G and $k \in \mathbb{N}$, is there a cut of size at least k in G (a partition of vertices into 2 sets A, B with $\geq k$ edges between A and B)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sudoku for n² numbers