NP-completeness

Peter Mayr

Computability Theory, April 21, 2021

Recall
> P ...problems that can be decided in polynomial time

» NP ...problems that can be verified in polynomial time

One of the Millenium Problems
Is P = NP?

Reductions

Definition

Let A, B € L*. A polynomial time many-one reduction from A
to B is a function f: ¥* — ¥* that is computable by a DTM in
polynomial time such that

Vx e X*: x e Aiff f(x) € B.

If a polynomial time many-one reduction from A to B exists, we
write A <P, B.

Note
Logspace reductions g',?,g, etc., are defined analogously.
Since LC P, also </°8 c <P

Hard problems don't reduce to easy ones

Lemma
Let A <P B.

1. If Be P, then Ac P.
2. If B € NP, then A € NP.

Proof.

» Let f be a reduction from A to B that is computable in n
time for some k € N.

Then |f(x)] < |x|k.

Assume B € DTIME(n®) for some £ € N.

Then f(x) € B can be decided in time |f(x)|* < [x|k*.
Thus x € A is decidable in O(n*?) time.

k

>
>
>
>

The hardest problems in NP

Definition
B is NP-hard (with respect to <P,) if for all A€ NP: A<}, B
B is NP-complete if B is NP-hard and B € NP.

Note

1. If some NP-complete problem is in P, then P=NP.

2. If Aiis NP-complete and A <k, B for some B € NP then B is
NP-complete.

Question
How to define “complete in P"7?

Satisfiability of Boolean formulas

Definition
> A Boolean formula ¢ is formed from variables xi, x2,... and
logical connectives A, V," (negation).
> O is satisfiable if ® is true for some assignment of its
variables to 0,1 (false, true).
» SAT := {f(®) : ® is a satisfiable Boolean formula }

Example
D(x1, x2, x3) = (X1 V x5) A (x2 V x3) is satisfiable by e.g.
x1+—0,x0 —0,x3— 1

Cook-Levin Theorem (1971)
SAT is NP-complete.

Proof.
SAT € NP: If a satisfying assignment for ® exists, it can be
verified in polynomial time in |®|.
Idea for hardness: For each A € NP construct a polytime
reduction to SAT realizing the following correspondences:

» NP machine N on w <> Boolean formula ¢

P accepting computational path for w < satisfying assigment

Let A € NP be decided by a nondeterministic TM N in time n* for
some k € N.

Represent a computational path of N for input w of length n by
the following n* x (n* + 3) table T of configurations with entries
in C:= QUT U{f} (state is left of the cell with the tape head):

fswy...wyo .. A start configuration
f f 2nd configuration
i f n*th configuration

» Describe T by a Boolean formula @ in variables Xx;j, for
1<i<nf, 1<j<nf+3 uvecC.
1 if T,'J = u,

» Interpret x;i, = {O |
else.

Define
D 1= Dol A Psrart A Prmove A <I>accept

such that & is satisfiable iff it describes an accepting
computational path.

1. Each cell of T contains exactly one symbol from C:

Seen = N\ | (V xiu) A N O A i)'

i ueC u#v

2. The first row contains the start configuration:

Dgrart := X114 A X125 A\ X13w4 A - - .

3. The accept state t of N occurs in T:

<I>accept = \/XUt
iJj

4. Each row encodes the successor configuration of the previous
is expressed via ®move.

To define ®ove Say a 2 x 3 subblock of T is legal if it is
consistent with the transition function A of N.

E.g. if A(g,a) ={(q’,b,—1),...}, the following are legal:

These are illegal:

qg|a glal|d alb
"lc|b clb|d alb
b|b * | k| * qg|a
alb gl=*|q alcl|b

Let

D move := all 2x3 subblocks of T are legal

V

)

C1

(]

3

C4

Cs

Co

legal

Xi7jvcl /\ XI‘,_[’+1,C2 /\ Xi,j+2,C3/\
Xi+1j,c5 N Xit1,j+1,05 N\ Xi+1,j+2,c6

Claim.

If the top row of T represents the starting configuration of N and
each 2 x 3 subblock is legal, then each row is the successor
configuration of the previous.

Proof by induction on the rows of T.

> If a cell of T contains some a € [but is not next to a state, it
is the center top of some legal 2 x 3 subblock

and remains unchanged.
> Cells next to some state g occur in legal blocks

q

k| ok | ok

and change according to the transition function A. O

This completes the proof that

w € L(N) iff ® = Ot A Pstart A Prmove A Paccept is satisfiable.

Complexity of the reduction.
» Each variable is represented by its index in O(log n) space.
» O is a conjunction of O(n?) variables.
> ®giart is a conjunction of O(n*) variables.
» ®,ccept is a disjunction of O(n?k) variables.
> ®pove contains O(n?k) variables.

Since every part of ® can be written down in polynomial time in n,
we have L(N) <F, SAT. O

k-SAT

A Boolean formula ® is in k-CNF if ® is in conjunctive normal
form and each clause has k literals (arguments or their negations),
eg ®=(x1VxpVx5)A(x2V x5V xa)isin 3-CNF.

k-SAT :={® in k-CNF : o is satisfiable}
Corollary
k-SAT is NP-complete for k > 3.

Proof.
Adapt the proof for SAT to rewrite ® in k-CNF. U

Corollary
2-SAT is in NL.

Proof.
HW]

