
NP-completeness

Peter Mayr

Computability Theory, April 21, 2021

Recall
I P . . . problems that can be decided in polynomial time

I NP . . . problems that can be verified in polynomial time

One of the Millenium Problems
Is P = NP?

Reductions

Definition
Let A,B ∈ Σ∗. A polynomial time many-one reduction from A
to B is a function f : Σ∗ → Σ∗ that is computable by a DTM in
polynomial time such that

∀x ∈ Σ∗ : x ∈ A iff f (x) ∈ B.

If a polynomial time many-one reduction from A to B exists, we
write A ≤p

m B.

Note
Logspace reductions ≤log

m , etc., are defined analogously.
Since L⊆ P, also ≤log

m ⊆ ≤p
m.

Hard problems don’t reduce to easy ones

Lemma
Let A ≤p

m B.

1. If B ∈ P, then A ∈ P.

2. If B ∈ NP, then A ∈ NP.

Proof.
I Let f be a reduction from A to B that is computable in nk

time for some k ∈ N.

I Then |f (x)| ≤ |x |k .

I Assume B ∈ DTIME(n`) for some ` ∈ N.

I Then f (x) ∈ B can be decided in time |f (x)|` ≤ |x |k`.
I Thus x ∈ A is decidable in O(nk`) time.

The hardest problems in NP

Definition
B is NP-hard (with respect to ≤p

m) if for all A ∈ NP: A ≤p
m B

B is NP-complete if B is NP-hard and B ∈ NP.

Note

1. If some NP-complete problem is in P, then P=NP.

2. If A is NP-complete and A ≤p
m B for some B ∈ NP then B is

NP-complete.

Question
How to define “complete in P”?

Satisfiability of Boolean formulas

Definition
I A Boolean formula Φ is formed from variables x1, x2, . . . and

logical connectives ∧,∨,′ (negation).

I Φ is satisfiable if Φ is true for some assignment of its
variables to 0, 1 (false, true).

I SAT := {](Φ) : Φ is a satisfiable Boolean formula }

Example

Φ(x1, x2, x3) = (x ′1 ∨ x ′2) ∧ (x2 ∨ x3) is satisfiable by e.g.
x1 7→ 0, x2 7→ 0, x3 7→ 1

Cook-Levin Theorem (1971)

SAT is NP-complete.

Proof.
SAT ∈ NP: If a satisfying assignment for Φ exists, it can be
verified in polynomial time in |Φ|.

Idea for hardness: For each A ∈ NP construct a polytime
reduction to SAT realizing the following correspondences:

I NP machine N on w ↔ Boolean formula Φ

I accepting computational path for w ↔ satisfying assigment

Let A ∈ NP be decided by a nondeterministic TM N in time nk for
some k ∈ N.
Represent a computational path of N for input w of length n by
the following nk × (nk + 3) table T of configurations with entries
in C := Q ∪ Γ ∪ {]} (state is left of the cell with the tape head):

]s w1 . . .wn . . .] start configuration
]] 2nd configuration
...

...
]] nkth configuration

I Describe T by a Boolean formula Φ in variables xiju for
1 ≤ i ≤ nk , 1 ≤ j ≤ nk + 3, u ∈ C .

I Interpret xiju =

{
1 if Ti ,j = u,

0 else.

Define
Φ := Φcell ∧ Φstart ∧ Φmove ∧ Φaccept

such that Φ is satisfiable iff it describes an accepting
computational path.

1. Each cell of T contains exactly one symbol from C :

Φcell :=
∧
i ,j

(
∨
u∈C

xiju) ∧
∧
u 6=v

(xiju ∧ xijv)′


2. The first row contains the start configuration:

Φstart := x11] ∧ x12s ∧ x13w1 ∧ . . .

3. The accept state t of N occurs in T :

Φaccept :=
∨
i ,j

xijt

4. Each row encodes the successor configuration of the previous
is expressed via Φmove.

To define Φmove say a 2× 3 subblock of T is legal if it is
consistent with the transition function ∆ of N.

E.g. if ∆(q, a) = {(q′, b,−1), . . . }, the following are legal:

c q a

q′ c b

q a d

c b d

a b c

a b c

These are illegal:

a b b

a a b

∗ ∗ ∗
q ∗ q′

c q a

a c b

Let

Φmove := all 2×3 subblocks of T are legal

=
∧
i ,j

∨
c1 c2 c3
c4 c5 c6

legal

(
xi ,j ,c1 ∧ xi ,j+1,c2 ∧ xi ,j+2,c3∧
xi+1,j ,c4 ∧ xi+1,j+1,c5 ∧ xi+1,j+2,c6

)

Claim.
If the top row of T represents the starting configuration of N and
each 2× 3 subblock is legal, then each row is the successor
configuration of the previous.

Proof by induction on the rows of T .

I If a cell of T contains some a ∈ Γ but is not next to a state, it
is the center top of some legal 2× 3 subblock

∗ a ∗
∗ a ∗

and remains unchanged.

I Cells next to some state q occur in legal blocks

c q a

∗ ∗ ∗

and change according to the transition function ∆.

This completes the proof that

w ∈ L(N) iff Φ = Φcell ∧ Φstart ∧ Φmove ∧ Φaccept is satisfiable.

Complexity of the reduction.

I Each variable is represented by its index in O(log n) space.

I Φcell is a conjunction of O(n2k) variables.

I Φstart is a conjunction of O(nk) variables.

I Φaccept is a disjunction of O(n2k) variables.

I Φmove contains O(n2k) variables.

Since every part of Φ can be written down in polynomial time in n,
we have L(N) ≤p

m SAT.

k-SAT

A Boolean formula Φ is in k-CNF if Φ is in conjunctive normal
form and each clause has k literals (arguments or their negations),
e.g. Φ = (x1 ∨ x ′2 ∨ x ′3) ∧ (x2 ∨ x ′3 ∨ x4) is in 3-CNF.

k-SAT := {Φ in k-CNF : Φ is satisfiable}

Corollary

k-SAT is NP-complete for k ≥ 3.

Proof.
Adapt the proof for SAT to rewrite Φ in k-CNF.

Corollary

2-SAT is in NL.

Proof.
HW

