NP-completeness

Peter Mayr

Computability Theory, April 21, 2021

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Recall

- ▶ P ... problems that can be decided in polynomial time
- ▶ NP ... problems that can be verified in polynomial time

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

One of the Millenium Problems Is P = NP?

Reductions

Definition

Let $A, B \in \Sigma^*$. A polynomial time many-one reduction from A to B is a function $f: \Sigma^* \to \Sigma^*$ that is computable by a DTM in polynomial time such that

 $\forall x \in \Sigma^* : x \in A \text{ iff } f(x) \in B.$

If a polynomial time many-one reduction from A to B exists, we write $A \leq_m^p B$.

Note

Logspace reductions \leq_m^{\log} , etc., are defined analogously. Since L \subseteq P, also $\leq_m^{\log} \subseteq \leq_m^p$.

Hard problems don't reduce to easy ones

Lemma Let $A \leq_m^p B$. 1. If $B \in P$, then $A \in P$. 2. If $B \in NP$, then $A \in NP$.

Proof.

Let f be a reduction from A to B that is computable in n^k time for some k ∈ N.

- Then $|f(x)| \leq |x|^k$.
- Assume $B \in \mathsf{DTIME}(n^{\ell})$ for some $\ell \in \mathbb{N}$.
- Then $f(x) \in B$ can be decided in time $|f(x)|^{\ell} \le |x|^{k\ell}$.
- Thus $x \in A$ is decidable in $O(n^{k\ell})$ time.

The hardest problems in NP

Definition

B is **NP-hard** (with respect to \leq_m^p) if for all $A \in NP$: $A \leq_m^p B$ *B* is **NP-complete** if *B* is NP-hard and $B \in NP$.

Note

- 1. If some NP-complete problem is in P, then P=NP.
- 2. If A is NP-complete and $A \leq_m^p B$ for some $B \in NP$ then B is NP-complete.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question

How to define "complete in P"?

Satisfiability of Boolean formulas

Definition

A Boolean formula Φ is formed from variables x₁, x₂,... and logical connectives ∧, ∨,' (negation).

- Φ is satisfiable if Φ is true for some assignment of its variables to 0, 1 (false, true).
- SAT := { $\sharp(\Phi)$: Φ is a satisfiable Boolean formula }

Example

 $\begin{array}{l} \Phi(x_1,x_2,x_3)=(x_1'\vee x_2')\wedge(x_2\vee x_3) \text{ is satisfiable by e.g.} \\ x_1\mapsto 0,x_2\mapsto 0,x_3\mapsto 1 \end{array}$

Cook-Levin Theorem (1971) SAT is NP-complete.

Proof.

SAT \in NP: If a satisfying assignment for Φ exists, it can be verified in polynomial time in $|\Phi|$.

Idea for hardness: For each $A \in NP$ construct a polytime reduction to SAT realizing the following correspondences:

- $\blacktriangleright \text{ NP machine N on } w \qquad \qquad \leftrightarrow \text{Boolean formula } \Phi$
- accepting computational path for $w \leftrightarrow$ satisfying assignment

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let $A \in NP$ be decided by a nondeterministic TM N in time n^k for some $k \in \mathbb{N}$.

Represent a computational path of N for input w of length n by the following $n^k \times (n^k + 3)$ table T of configurations with entries in $C := Q \cup \Gamma \cup \{ \sharp \}$ (state is left of the cell with the tape head):

$\sharp s w_1 \dots w_n $	··· _#	start configuration
#	#	2nd configuration
		:
#	#	n ^k th configuration

Define

$$\Phi := \Phi_{\mathsf{cell}} \land \Phi_{\mathsf{start}} \land \Phi_{\mathsf{move}} \land \Phi_{\mathsf{accept}}$$

such that Φ is satisfiable iff it describes an accepting computational path.

1. Each cell of T contains exactly one symbol from C:

$$\Phi_{\mathsf{cell}} := \bigwedge_{i,j} \left((\bigvee_{u \in C} x_{iju}) \land \bigwedge_{u \neq v} (x_{iju} \land x_{ijv})' \right)$$

2. The first row contains the start configuration:

$$\Phi_{\mathsf{start}} := x_{11\sharp} \wedge x_{12s} \wedge x_{13w_1} \wedge \ldots$$

3. The accept state t of N occurs in T:

$$\Phi_{\mathsf{accept}} := \bigvee_{i,j} x_{ijt}$$

 Each row encodes the successor configuration of the previous is expressed via Φ_{move}. To define Φ_{move} say a 2 × 3 subblock of T is **legal** if it is consistent with the transition function Δ of N.

E.g. if $\Delta(q,a) = \{(q',b,-1),\dots\}$, the following are legal:

С	q	а	q	а	d
q'	С	b	С	b	d

d	а	b	С	
d	а	b	С	

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

These are illegal:

а	b	b	*	*	*	С	q	а
а	а	b	q	*	q'	а	С	b

Let

 $\Phi_{\mathsf{move}} := \mathsf{all} \ 2 \times 3 \ \mathsf{subblocks} \ \mathsf{of} \ \mathcal{T} \ \mathsf{are} \ \mathsf{legal}$

$$= \bigwedge_{i,j} \bigvee_{\substack{c_1 \ c_2 \ c_3 \\ c_4 \ c_5 \ c_6}} \left(\begin{array}{c} x_{i,j,c_1} \land x_{i,j+1,c_2} \land x_{i,j+2,c_3} \land \\ x_{i+1,j,c_4} \land x_{i+1,j+1,c_5} \land x_{i+1,j+2,c_6} \end{array} \right)$$

Claim.

If the top row of T represents the starting configuration of N and each 2×3 subblock is legal, then each row is the successor configuration of the previous.

Proof by induction on the rows of T.

If a cell of T contains some $a \in \Gamma$ but is not next to a state, it is the center top of some legal 2×3 subblock

*	а	*
*	а	*

and remains unchanged.

Cells next to some state q occur in legal blocks

С	q	а	
*	*	*	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

and change according to the transition function Δ .

This completes the proof that

 $w \in L(N)$ iff $\Phi = \Phi_{cell} \wedge \Phi_{start} \wedge \Phi_{move} \wedge \Phi_{accept}$ is satisfiable.

Complexity of the reduction.

- Each variable is represented by its index in O(log n) space.
- Φ_{cell} is a conjunction of $O(n^{2k})$ variables.
- Φ_{start} is a conjunction of $O(n^k)$ variables.
- Φ_{accept} is a disjunction of $O(n^{2k})$ variables.
- Φ_{move} contains $O(n^{2k})$ variables.

Since every part of Φ can be written down in polynomial time in *n*, we have $L(N) \leq_m^p SAT$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

k-SAT

A Boolean formula Φ is in *k*-**CNF** if Φ is in conjunctive normal form and each clause has *k* literals (arguments or their negations), e.g. $\Phi = (x_1 \lor x'_2 \lor x'_3) \land (x_2 \lor x'_3 \lor x_4)$ is in 3-CNF.

k-SAT := { Φ in k-CNF : Φ is satisfiable}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

k-SAT is NP-complete for $k \geq 3$.

Proof. Adapt the proof for SAT to rewrite Φ in *k*-CNF.

Corollary 2-SAT is in NL.

Proof. HW