The Immerman-Szelepcsényi Theorem

Peter Mayr

Computability Theory, April 19, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Note

- ▶ The complement of a complexity class C is denoted co-C.
- Clearly deterministic complexity classes are closed under complements but is not known whether NP = co-NP.
- The following was proved independently by Immerman and Szelepcsényi (then an undergrad) in 1987 and won them the Gödel prize in 1995.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Immerman-Szelepcsényi Theorem NSPACE(s(n)) = co-NSPACE(s(n)) for $s(n) \ge \log n$.

Corollary

NL=co-NL

Proof.

Idea: Suppose we have a non-deterministic membership test for some $A \in \Sigma^n$ and we know |A|.

Then we also have a non-deterministic membership test for $\Sigma^n \setminus A$:

In on input x, successively guess |A| distinct strings ≠ x and show they are in A.

Let M be a nondeterministic TM with input and work tape that runs in s(n)-space.

- For fixed input of length n, every configuration of M (state, positions of tape heads, content of work tape) can be represented by an s(n)-tuple over some finite C (uses s(n) ≥ log n to encode the position ≤ n on input tape).
- Let start, accept $\in C^{s(n)}$ be the unique starting and accepting configuration on inputs of length *n*.
- For $m \in \mathbb{N}$ let A_m be the set of configurations that can be reached from start in $\leq m$ steps.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Then M accepts x iff $accept \in A_{|C|^{s(n)}}$.

A non-deterministic TM N with $L(N) = \overline{L(M)}$

On input x of length n, compute $|A_0|, |A_1|, \dots, |A_{|C|^{s(n)}}|$ inductively:

- 1. $|A_0| := 1$
- 2. Given $|A_m|$, set $|A_{m+1}| := 0$ and enumerate $\beta \in C^{s(n)}$ lexicographically.
- 3. To check $\beta \in A_{m+1}$,
 - 3.1 non-deterministically guess the $|A_m|$ elements $\alpha \in A_m$ in lexicographical order,
 - 3.2 guess and verify a path of length $\leq m$ from start to α and
 - 3.3 check that β is a successor of α .
- 4. If $\beta \in A_{m+1}$, then increase the counter for $|A_{m+1}|$ by 1. Repeat for the next β in lexicographical order.

For $m = |C|^{s(n)}$ enumerate $\alpha \in A_{|C|^{s(n)}}$ in lexicographical order as in steps 3.1-2 above.

If accept $\neq \alpha$ for all of them, then $x \notin L(M)$ and N accepts x.

Space complexity of N:

- At each step N's working tape holds m, |A_m|, |A_{m+1}|, β, α, i and 2 intermediate configurations in A_i, A_{i+1} on a path from start to α.
- Each of these takes s(n) space.

Hence N runs in O(s(n)) space.

Recall:

To avoid the assumption that s(n) is space constructible, let N run for successive values $s = \log n, \log n + 1, ...$

- Whenever M tries to use more than s space, restart N with s+1 space.
- Since M runs in s(n) space, it eventually will not reach any longer configurations and the loop above stops with N only ever using O(s(n)) space.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・