PSPACE and Savitch's Theorem

Peter Mayr

Computability Theory, April 7, 2021

(ロ)、(型)、(E)、(E)、 E) の(()

Recall: We had a polytime algorithm for the following. Reachability (Path) Input: digraph G = (V, E) with vertices $\{1, ..., n\}$ Question: Is there a path in *G* from 1 to *n*?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Theorem (Savitch 1970)

Reachability is in DSPACE($(\log n)^2$).

Proof.

Let G = (V, E) be a digraph with $V = \{1, \ldots, n\}$.

• Define Path $(x, y, i) := \exists$ path in G from i to j of length $\leq 2^i$

• y is reachable from x iff $Path(x, y, \lceil \log_2 n \rceil)$.

Recursion for Path(x, y, i):

- 1. If i = 0, then return $[x = y \text{ or } (x, y) \in E]$.
- 2. For $z \in V$ do
- 3. If Path(x, z, i 1) and Path(z, y, i 1), then return true.

4. Return false.

Correctness:

- If there is a path from x to y of length ≤ 2ⁱ, then a midway point z will be found in the loop 2-3 and true returned in 3.
- ► If there is no path from x to y of length ≤ 2ⁱ, the condition in 3. is never satisfied. Hence false is returned in 4.

Input size of Path(x, y, i): O(log(n)) since $x, y, i \le n$. Space:

- Path(x, y, i) has recursion depth i. Its computation is represented by a binary tree with 2ⁱ leaves at i = 0.
- ► At each level we need to store x, y, z, i, the value of Path(x, z, i − 1), etc. This needs O(log n) space.
- Hence at any time Path(x, y, i) needs O(i log n) space.

▶ Path $(1, n, \lceil \log_2 n \rceil)$ needs $O((\log n)^2)$ space.

Savitch's Theorem NSPACE $(s(n)) \subseteq$ DSPACE $(s(n)^2)$ for any $s(n) \ge \log n$.

Proof.

Let N be a non-deterministic TM with input (no output) and one working tape that runs in space s(n).

- Consider the configurations of N as vertices of a digraph G with an edge u → v if v is a successor configuration of u.
- N accepts input x iff there is a path from the starting configuration start to some accepting configuration accept in G (wlog accept is unique).
- ▶ Recall there exists c such that for |x| = n, N has ≤ 2^{cs(n)} reachable configurations (vertices of G).
- Use the recursive algorithm from the previous Theorem to decide Path(start, accept, cs(n)).
 - We never need to store all vertices of G at once, just $O(s(n)^2)$.
 - Whether $u \rightarrow v$ is determined by the transition function of N.
- Hence reachability in G can be decided in DSPACE $(s(n)^2)$.

We do not need to know s(n) in advance, instead:

Let x be an input of length n.

For $s = \log n, \log n + 1, \ldots$

- If Path(start,accept,s) where all intermediate configurations of N have size ≤ s, then accept.
- If no configuration of size s + 1 is reachable from start, then reject.

Since N runs in space s(n), this loop will eventually halt.

The most prominent application of Savitch's Theorem is that deterministic and non-deterministic polynomial space coincide (same for exponential space).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary PSPACE=NPSPACE

An example in PSPACE

Membership for transformation semigroups

Input: transformations (functions) a_1, \ldots, a_k, b on $\{1, \ldots, n\}$ **Question:** Is *b* generated by a_1, \ldots, a_k under composition, $b \in \langle a_1, \ldots, a_k \rangle$?

Theorem (Kozen 1970s)

Membership for transformation semigroups is in PSPACE (actually PSPACE-complete).

Proof.

For $\ell \in \mathbb{N}$ let

$$egin{aligned} \mathcal{A}^\ell &:= \{ a_{i_1} \dots a_{i_s} \ : \ s \leq \ell, i_1, \dots, i_s \in \{1, \dots, k\} \}. \ & \mathcal{A}^0 \subseteq \mathcal{A}^1 \subseteq \mathcal{A}^2 \subseteq \dots \end{aligned}$$

Since there are n^n functions on $\{1, \ldots, n\}$, this chain stabilizes after $\leq n^n$ steps and $\langle a_1, \ldots, a_k \rangle = A^{n^n}$.

Non-deterministic algorithm for membership:

- 1. Choose $c := a_{i_1}$ non-deterministically.
- 2. For $s = 2, ..., n^n$ do
- 3. Choose $i_s \in \{1, \ldots, k\}$ non-deterministically, let $c := ca_{i_s}$.
- 4. If c = b, then return true.
- 5. Return false.

Correctness: Every element in $\langle a_1, \ldots, a_k \rangle$ can be written as product of $\leq n^n$ generators.

Space complexity: O(n) for storing, updating *c*.

Membership is in NPSPACE, hence in PSPACE by Savitch's Theorem.