
PSPACE and Savitch’s Theorem

Peter Mayr

Computability Theory, April 7, 2021

Recall: We had a polytime algorithm for the following.

Reachability (Path)

Input: digraph G = (V ,E) with vertices {1, . . . , n}
Question: Is there a path in G from 1 to n?

Theorem (Savitch 1970)

Reachability is in DSPACE((log n)2).

Proof.
Let G = (V ,E) be a digraph with V = {1, . . . , n}.
I Define Path(x , y , i) := ∃ path in G from i to j of length ≤ 2i

I y is reachable from x iff Path(x , y , dlog2 ne).

Recursion for Path(x , y , i):

1. If i = 0, then return [x = y or (x , y) ∈ E].

2. For z ∈ V do

3. If Path(x , z , i − 1) and Path(z , y , i − 1), then return true.

4. Return false.

Correctness:

I If there is a path from x to y of length ≤ 2i , then a midway
point z will be found in the loop 2-3 and true returned in 3.

I If there is no path from x to y of length ≤ 2i , the condition in
3. is never satisfied. Hence false is returned in 4.

Input size of Path(x , y , i): O(log(n)) since x , y , i ≤ n.

Space:

I Path(x , y , i) has recursion depth i . Its computation is
represented by a binary tree with 2i leaves at i = 0.

I At each level we need to store x , y , z , i , the value of
Path(x , z , i − 1), etc. This needs O(log n) space.

I Hence at any time Path(x , y , i) needs O(i log n) space.

I Path(1, n, dlog2 ne) needs O((log n)2) space.

Savitch’s Theorem
NSPACE(s(n)) ⊆ DSPACE(s(n)2) for any s(n) ≥ log n.

Proof.
Let N be a non-deterministic TM with input (no output) and one
working tape that runs in space s(n).

I Consider the configurations of N as vertices of a digraph G
with an edge u → v if v is a successor configuration of u.

I N accepts input x iff there is a path from the starting
configuration start to some accepting configuration accept

in G (wlog accept is unique).

I Recall there exists c such that for |x | = n, N has ≤ 2cs(n)

reachable configurations (vertices of G).
I Use the recursive algorithm from the previous Theorem to

decide Path(start, accept, cs(n)).
I We never need to store all vertices of G at once, just O(s(n)2).
I Whether u → v is determined by the transition function of N.

I Hence reachability in G can be decided in DSPACE(s(n)2).

We do not need to know s(n) in advance, instead:

Let x be an input of length n.
For s = log n, log n + 1, . . .

I If Path(start,accept,s) where all intermediate
configurations of N have size ≤ s, then accept.

I If no configuration of size s + 1 is reachable from start, then
reject.

Since N runs in space s(n), this loop will eventually halt.

The most prominent application of Savitch’s Theorem is that
deterministic and non-deterministic polynomial space coincide
(same for exponential space).

Corollary

PSPACE=NPSPACE

An example in PSPACE

Membership for transformation semigroups

Input: transformations (functions) a1, . . . , ak , b on {1, . . . , n}
Question: Is b generated by a1, . . . , ak under composition,
b ∈ 〈a1, . . . , ak〉?

Theorem (Kozen 1970s)

Membership for transformation semigroups is in PSPACE (actually
PSPACE-complete).

Proof.
For ` ∈ N let

A` := {ai1 . . . ais : s ≤ `, i1, . . . , is ∈ {1, . . . , k}}.

A0 ⊆ A1 ⊆ A2 ⊆ . . .

Since there are nn functions on {1, . . . , n}, this chain stabilizes
after ≤ nn steps and 〈a1, . . . , ak〉 = Ann .

Non-deterministic algorithm for membership:

1. Choose c := ai1 non-deterministically.

2. For s = 2, . . . , nn do

3. Choose is ∈ {1, . . . , k} non-deterministically, let c := cais .

4. If c = b, then return true.

5. Return false.

Correctness: Every element in 〈a1, . . . , ak〉 can be written as
product of ≤ nn generators.

Space complexity: O(n) for storing, updating c .

Membership is in NPSPACE, hence in PSPACE by Savitch’s
Theorem.

