
Computational Complexity

Peter Mayr

Computability Theory, March 31, 2021



Question
How to measure the hardness of solvable computational problems?

Based on

� Hopcroft, John; Motwani, Rajeev; Ullman, Jeffrey.
Introduction to automata theory, languages, and computation.
Pearson, 3rd edition, 2006.

� Papadimitriou, Christos. Computational complexity.
Addison-Wesley, 1994.

� Sipser, Michael. Introduction to the theory of computation.
Thomson Course Technology, Boston, 2nd edition, 2006.



Time complexity of a DTM

Definition
Let M be a DTM (1 tape, one-sided infinite) on an input alphabet
Σ that halts on every input, let t : N → N.
M runs in time t(n) (has (worst case) running time, time
complexity t(n)) if t(n) is the maximum number of steps that M
uses on any input x ∈ Σ∗ with |x | = n.

Note
� t(n) is usually hard to determine exactly.

� It is more relevant how the complexity increases in the size of
the input, i.e. the asymptotics of t.



Big O notation

Definition
For f , g : N → R+

0 , we say f = O(g) (read f is big O of g) if

∃c ,N ∈ N ∀n ≥ N : f (n) ≤ cg(n).

Example

� 5n3 − n + 1 = O(n3)

� n = O(n3)

� Constant functions are O(1).

� log2(n), log10(n) = O(log(n)) (base does not matter)

Lemma
For f1 = O(g1), f2 = O(g2) and c > 0

� f1 · f2 = O(g1g2),

� f1 + f2 = O(max(g1, g2)),

� cf1 = O(cg1) = O(g1).



Example

L = {0k1k : k ∈ N} is computable by a DTM.

On input w of length n:

1. Scan across w . Reject if 1 is followed by 0.

2. While the tape is not empty, replace the first 0 and last 1 by .

3. If some 0 remains but no 1 (or conversely), reject; else accept.

Time used

in 1. O(n)

in 2. n
2O(n) = O(n2)

in 3. O(n)

Overall running time is O(n2).

Space complexity is O(n)
(For now space is just measured in the number of cells used on the
tape; proper definition later).



Complexity depends on the model

Note
All Turing complete computational models have the same
expressive power but

� may encode input in different sizes (e.g. numbers in unary,
binary . . . )

� may have different time/space complexity for the same
computation.

Theorem
Any k-tape DTM running in time t(n) ≥ n (on inputs of length n)
can be simulated by a single tape DTM running in time O(t(n)2).



Proof sketch.
Recall: a configuration of a k-tape DTM M consists of

� state q

� k tape contents l1a1r1 , . . . , lkak rk
� with tape heads reading a1, . . . , ak (here li , ri are finite strings

over the tape alphabet Γ).

Extending Γ with a delimiter ∗ and Γ� := {a� : a ∈ Γ}, a single
tape DTM M � may represent the k tape contents as

� ∗l1a�1r1 ∗ l2a�2r2 ∗ · · · ∗ lka�k rk ∗ . . .
(Symbols a�i record the tape head positions of M.)

To simulate one step of M, M � scans its tape left to right and back

� reading a�1, . . . , a
�
k ,

� applying the transition function of M,

� replacing a�i (and their neighbors) accordingly.



Running time of the single tape M � on input x

� Initially M � formats its tape as ∗x ∗ ∗ · · · ∗ in O(|x |).
� Since M halts after ≤ t(|x |) steps on x , it never uses more

than t(|x |) space on any of its tapes.

� So M � needs O(kt(|x |)) space.
� Simulating a single step of M takes O(kt(|x |)) steps for M �.
� Hence M � has running time O(|x |) + O(kt(|x |)2) =

O(t(|x |)2).

Question
What is the running time of a DTM with a single one-sided infinite
tape simulating a DTM with a single bi-infinite tape?



Time complexity of a non-deterministic TM

Definition
Let N be a non-deterministic TM (1 tape, one-sided infinite) on an
input alphabet Σ such that all computation branches halt on all
inputs, let t : N → N.
N runs in time t(n) if t(n) is the maximum number of steps that
N uses on any computation branch on any input x ∈ Σ∗ with
|x | = n.



Note
Why the maximum length over all branches and not the length of
the shortest accepting branch if that exists?

� The given measure is easier to analyze and

� will yield the same class NP.



Changing from non-deterministic to deterministic

Theorem
Any non-deterministic TM N running in time t(n) ≥ log(n) (on
inputs of length n) can be simulated by a DTM M running in time
2O(t(n)).

Proof sketch.
Recall: Construct a DTM M that tries all branches of N’s
computation tree breadth first.
Let b := max{|Δ(q, a)| : q ∈ Q, a ∈ Γ}, label all transitions in
Δ(q, a) by 1, . . . , b.

For s = 1, 2, . . .

� Enumerate paths (a1, . . . , as) with ai ≤ b.

� Simulate the computation branch of N labelled (a1, . . . , as).

� If N accepts, then so does M; else M uses the next path.

� If at some stage s all computations of N halt without
accepting, then M rejects.



Running time of M

� There are ≤ �t(n)
s=1 b

s = O(bt(n)) paths.

� O(t(n)) time to generate and simulate a single path.

� Hence M has running time O(t(n)bt(n)) = 2O(t(n)).



Complexity of problems

Our definition of the complexity of TMs (that always halt) can be
extended to their (computable) languages.

Definition
DTIME(t(n)) :=

{L(M) : M is a DTM with running time O(t(n))}
NTIME(t(n)) :=
{L(M) : M is a non-deterministic TM with running time O(t(n))}

Some common complexity classes:

Definition
P := DTIME(nO(1)) =

�
k∈N DTIME(nk)

NP := NTIME(nO(1)) =
�

k∈N NTIME(nk)

EXPTIME := DTIME(2n
O(1)

) =
�

k∈N DTIME(2n
k
)

NEXPTIME := NTIME(2n
O(1)

) =
�

k∈N NTIME(2n
k
)


