Incomparable degrees

Peter Mayr

Computability Theory, March 22, 2021

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

So far we constructed only degrees $\mathbf{0} < \mathbf{0}' < \mathbf{0}'' < \dots$

Question

- Are there any other Turing degrees?
- Are Turing degrees linearly ordered?

Note

By the Jump Theorem 4, the jump is monotonous, i.e.

$$\mathbf{b} \leq \mathbf{a} \Rightarrow \mathbf{b}' \leq \mathbf{a}'.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Hence $\mathbf{0}' \leq \mathbf{a}'$ for every degree \mathbf{a} .

The jump is not injective

Theorem (Spector, 1956)

There exists a degree **a** such that $\mathbf{0} < \mathbf{a} < \mathbf{a}' = \mathbf{0}'$.

Proof.

We want to construct $A \subseteq \mathbb{N}$ such that

• A is not computable, $R_{2e}: \chi_A \neq \varphi_e$.

► $A' \leq \emptyset'$ $R_{2e+1}: \varphi_e^A(e) \downarrow \text{ is } \emptyset'\text{-computable.}$

To satisfy these requirements for all $e \in \mathbb{N}$ define finite initial segments σ_s of χ_A in stages enumerated by $s \in \mathbb{N}$.

Initialize $\sigma_0 := ()$. **Stage** s = 2e [Put x into A iff $\varphi_e(x) = 0$]: Given σ_s , let $x := |\sigma_s|$ and test \emptyset' -computably whether

$$\exists t: \varphi_{e,t}(x) \downarrow \text{ and } \varphi_{e,t}(x) = 0.$$

If yes, let $\sigma_{s+1} := \sigma_s \circ (1)$; else $\sigma_{s+1} := \sigma_s \circ (0)$.

・ロト 4回 > 4回 > 4回 > 4回 > 4回 >

Stage s = 2e + 1 [Decide whether $e \in A'$]: Given σ_s test \emptyset' -computably whether

$$\exists \sigma \ \exists t : \ \sigma_s \subseteq \sigma, \ \varphi^{\sigma}_{e,t}(e) \downarrow$$

Let σ_{s+1} be the smallest such σ if it exists; else $\sigma_{s+1} := \sigma_s$.

Let $A \subseteq \mathbb{N}$ with characteristic function $\bigcup_{s \in \mathbb{N}} \sigma_s$. Then

- 1. $A >_T \emptyset$ since it satisfies R_{2e} for all e;
- 2. σ_s and hence A is computable in \emptyset' by construction;
- 3. $A' \leq_T \emptyset'$ since

 $e\in {\cal A}' ext{ iff } arphi_e^{\sigma_{2e+2}}(e)\downarrow$

where σ_{2e+2} is \emptyset' -computable by 2.

4. $A' \geq_T \emptyset'$ by the previous remark.

Note

A from the proof is $\leq \emptyset'$, hence Δ_2 by Post's Theorem (not necessarily Σ_1).

The jump is onto degrees \geq **0'**

Friedberg Completeness Criterion

For every degree $\mathbf{b} \geq \mathbf{0}$ ', there is a such that $\mathbf{b} = \mathbf{a} \vee \mathbf{0}$ ' = \mathbf{a} '.

Proof

Let $B \subseteq \mathbb{N}$ with $\emptyset' \leq_{\mathcal{T}} B$. Construct A such that

- $\blacktriangleright B \leq_T A \oplus \emptyset'$
- ► $A' \leq_T B$,

via finite initial segments σ_s ($s \in \mathbb{N}$) of χ_A .

```
Initialize \sigma_0 := ().

Stage s = 2e [Code \chi_B(e) into A]: \sigma_{s+1} := \sigma_s \circ (\chi_B(e))

Stage s = 2e + 1 [Decide whether e \in A', cf. Spector's Theorem]:

Given \sigma_s test \emptyset'-computably whether
```

$$\exists \sigma \; \exists t : \; \sigma_s \subseteq \sigma, \; \varphi_{e,t}^{\sigma}(e) \downarrow$$

Let σ_{s+1} be the smallest such σ if it exists; else $\sigma_{s+1} := \sigma_s$

Let $A \subseteq \mathbb{N}$ with characteristic function $\bigcup_{s \in \mathbb{N}} \sigma_s$.

- 1. σ_s and hence A is computable in $B \ge_T \emptyset'$ by construction.
- 2. $A' \leq_T B$ since

$$e\in \mathsf{A}' ext{ iff } arphi_e^{\sigma_{2e+2}}(e)\downarrow$$

where σ_{2e+2} is *B*-computable by 1.

- 3. σ_s is computable in $A \oplus \emptyset'$ by induction on s:
 - Given σ_{2e} , compute $\sigma_{2e+1} = \sigma_{2e} \circ (\chi_A(|\sigma_{2e}|))$ with A-oracle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Given σ_{2e+1} , compute σ_{2e+2} using \emptyset' -oracle.
- 4. $B \leq_T A \oplus \emptyset'$ by 3. since $\chi_B(e)$ is the last entry in σ_{2e+1} .

Incomparable degrees exist

Theorem (Avoiding cones) For every degree b>0 there exists 0< a < b' such that $a \wedge b = 0.$

Proof.

Let B be non-computable. Construct A such that

- A is not computable $R_{2e}: \chi_A \neq \varphi_e$
- Whenever $C \leq_T A$ and $C \leq_T B$, then C is computable $R_{2\sharp(e,f)+1}: \chi_C = \varphi_e^A = \varphi_f^B \Rightarrow C$ is computable.

Here \sharp denotes a computable bijection $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

Define initial segments σ_s of χ_A in stages.

Initialize $\sigma_0 := ()$. **Stage** s = 2e: Put $x := |\sigma_s|$ into A iff $\varphi_e(x) = 0$.

$$\sigma_{s+1} := \begin{cases} \sigma_s \circ (1) & \text{if } \varphi_e(x) \downarrow \text{ and } \varphi_e(x) = 0, \\ \sigma_s \circ (0) & \text{else.} \end{cases}$$

Stage $s = 2\sharp(e, f) + 1$: Given σ_s test \emptyset' -computably whether

$$\exists \sigma \; \exists \tau \; \exists x : \; \sigma_s \subseteq \sigma, \tau, \; \varphi_e^{\sigma}(x) \downarrow \neq \varphi_e^{\tau}(x) \downarrow \qquad (\dagger)$$

Case 1, (†) holds $[\sigma, \tau \text{ are } e\text{-splitting extensions of } \sigma_s]$:

Check B'-computably whether φ^B_f(x) ≠ φ^σ_e(x). If yes, set σ_{s+1} := σ; if no, σ_{s+1} := τ.

• Then
$$R_s$$
 holds since $\varphi_f^B \neq \varphi_e^A$.

Case 2, (†) does not hold: Set $\sigma_{s+1} := \sigma_s$.

- ▶ Claim: If $\chi_A \supseteq \sigma_s$ and $\psi := \varphi_e^A$ is total, then ψ is computable.
- To compute $\psi(x)$, dovetail $\varphi_e^{\tau}(x)$ for all strings extending σ_s .
- The first converging computation yields \u03c8(x) (Since (\u03c8) does not hold, all converging computations yield the same result).

• Then
$$R_s$$
 holds since $\chi_C = \varphi_e^A \Rightarrow C$ computable.

Finally

- 1. $\deg(A) > \mathbf{0}$ by requirements R_e ,
- 2. $\deg(A) \wedge \deg(B) = \mathbf{0}$ by requirements $R_{2\sharp(e,f)+1}$,
- 3. deg(A) \leq deg(B)' since A is computable in $\emptyset' \oplus B' \equiv_T B'$ by construction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary (Kleene, Post) There exist incomparable degrees \leq **0**'.

Proof.

- ▶ By Spector's Theorem we have $\emptyset <_T B <_T \emptyset'$.
- ▶ By the Avoiding Cones Theorem we have $A < \emptyset'$ such that

$$\deg(A) \wedge \deg(B) = \mathbf{0}, \ \deg(A) \vee \deg(B) = \mathbf{0}'.$$

• By Post's Theorem these A, B are Δ_2 , not Σ_1 .