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Question
What is the connection between

» the arithmetical hierarchy (classification of sets by definability)
» and Turing degrees (classification by computability)?



Finite approximations

Analyzing oracle machines requires computable approximations:
If 02(x) |, then only a finite part of A is used in this computation.

» For AC N and s € N, the s-tuple

(xa(0), xa(1),...,xa(s —1)) € {0,1}*

is an initial segment (finite approximation) of x .
» For o € {0,1}° write
o] = s,
o= (0(0),...,0(s—1)) and
8(0) =TT pf(')ﬂ (prime power encoding).
Note that |o|,o(i) are computable from £(o), i.
» For 0,7 € {0,1}* write ¢ C 7 and call ¢ an initial segment of
7 if |o| < |7] and o (i) = 7(i) for all i < |o].



Definition

>

>

>

Let AC N. If M2 halts on input x with output y and if u is
the maximum element for which the oracle is used (queried
for u € A) during the computation, write

e(x) =y used(x) = u.

use? is called the use function corresponding to 2(x).

©2(x) =y if d(x) =y, 0 € {0,1}* is an initial segment of
xa € {0,1} and usef(x) < |o| (i.e., only o is queried).
@é‘js(x) =y if 2(x) =y is computed by M2 in < s steps
and e, x, y,used(x) < s.

07 (x) ==y if g2 (x) =y, o € {0,1}* is an initial segment
of x4 and use?(x) < |o|.

g .__ 3 (o
W¢ s := domain g , etc.



Computable approximations

Lemma
L @f(x)=yiff3s o C xa: @I(x) =y
2. If o2 (x) =y, thenVt > sV Do ¢f(x)=y.
3. WY, (ie. {(e 8(0),x,5) : 9pZs(x)L}) is computable.

Proof.

1. Any computation that halts does so after finitely many steps,
using a finite part of the oracle.

2. If a computation halts after s steps with access to o, its
output will not change when given more time and a larger
part of the oracle.

3. Run M, on x with queries to o until it halts or s steps are
completed.
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Post’s Theorem relating ¥, and (")

Recall
» B C Nis X, if there is some computable R C N"*1 such that
B={x : 3y1VYy2...3/Vyn (x,y1,...,¥n) € R}.
> A= {x pR(x) )

Post's Theorem
Let ne N,BCN.

1. Bis X 41 iff Bis c.e. in some [,-set iff B is c.e. in some
2 ,-set.

2. 0" is ¥ -complete for n > 0.
3. Bis ¥p41 iff Biis 0("-cee.
4. Bis Apyq iff B <7 0.

Note: Properties of ¥ relativize to X1 = Z?(") by 3.



Proof 1.
=: Let B € X,4+1. Then we have R € I, such that

x € B iff 3y R(x,y).

Then B € ¥F, hence R-c.e. by our characterization of A-c.e. sets.

<: Assume B is A-c.e. for some A € I1,. Then for some e

x € B iff x € WA
iff 3s30: o CxaAx e W,

computable
Claim: 0 C xa is Lp41
o CxaiffVy <|o|: o(y) = xaly)
iff Vy < lo|: (o(y) =1,y € A)V(a(y) =0,y ¢ A)
i T,
Zn-%—l

Since ¥ 41 is closed under bounded V, the claim follows.
Then B € X 41.

Note: A-c.e = A-c.e. yields the second equivalence in 1.



Proof
2. Show (" is ¥ ,-complete for n > 0 by induction.

Base case: For n=1, (/ = K is X1-complete.
Induction step: Let B C N. Then

B e X, iff Bisc.e. in some X, set by 1.
iff B is c.e. in B(" by induction assumption
iff B < 0("t1) by the Jump Theorem 2.

Hence §("1) is ¥, 1-complete.
3. follows from 1. and 2.

4. B€Dpy1iff BLBE Y,y
iff B, B are 0(M-c.e. by 3.

iff B is §("-computable by Complementation Thm.
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