Turing degrees

Peter Mayr

Computability Theory, March 19, 2021

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Turing reductions

A, B denote subsets of \mathbb{N} throughout.

Definition

B is **Turing reducible** to *A* (denoted $B \leq_T A$) if *B* is computable in *A*.

Many-one vs Turing reduction

- B ≤_m A: ∃ computable f such that χ_B = χ_A ∘ f Oracle A is queried only once after encoding x as f(x).
- ► $B \leq_T A$: χ_B is recursive in χ_A Oracle χ_A can be used several times in defining χ_B .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Turing reductions are the most general computable reductions from B to A.

Definition

B is computably enumerable in *A* if $B = W_e^A$ for some *e* where $W_e^A = \text{domain}\varphi_e^A$.

Our current theory for c.e. sets relativizes to A-c.e. sets.

```
Relativized Complementation Theorem B \leq_T A iff B and \overline{B} are c.e. in A.
```

Theorem TFAE:

1. *B* is c.e. in *A*;

B = Ø or B is the range of some A-computable total function;
B is Σ^A₁.

Turing degrees

Definition

- A is **Turing equivalent** to B (denoted $A \equiv_{T} B$) if $A \leq_{T} B$ and $B \leq_{T} A$.
- $\blacktriangleright \equiv_T$ is an equivalence relation on the subsets of \mathbb{N} .
- The Turing degree of A is the equivalence class

$$\deg(A) := \{B : B \equiv_T A\}$$

- A degree is c.e. if it contains a c.e. set.
- The set of all degrees D is partially ordered by

 $\deg(A) \leq \deg(B) \text{ iff } A \leq_T B.$

Basic order properties

1. The smallest degree in D is

$$\mathbf{0} := \deg(\emptyset) = \{A : A \text{ is computable}\}\$$

2. Any two degrees have a supremum (least upper bound)

$$\deg(A) \lor \deg(B) = \deg(A \oplus B)$$

where

$$A \oplus B = \{2x : x \in A\} \cup \{2x+1 : x \in B\}$$

encodes the disjoint union of A and B. (HW)

 The supremum of infinitely many degrees and the infimum (greatest lower bound) of two degrees need not always exist. (postponed)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

4. D is a \lor -semilattice, not a lattice.

Turing jump

Problem

Given a degree $\mathbf{a} = \deg(A)$ find a degree $\mathbf{b} = \deg(B)$ that is strictly greater than \mathbf{a} (denoted $\mathbf{a} < \mathbf{b}$). In other words, find *B* that is not *A*-computable.

Definition

For $A \subseteq \mathbb{N}$, the relativized diagonal Halting Problem

$$A' := K^A = \{x : \varphi_x^A(x) \downarrow\} = \{x : x \in W_x^A\}$$

is the jump of A.

Basic properties of the jump

Jump Theorem For $A, B \subseteq \mathbb{N}$ 1. A' is A-c.e.; 2. B is A-c.e. iff $B \leq_m A'$; 3. $A <_T A'$; 4. $B \leq_T A$ iff $B' \leq_m A'$; 5. If $B \equiv_T A$, then $B' \equiv_m A'$.

Proof 1.

By the Relativized Enumeration Theorem we have z such that

$$\forall e, x: \varphi_e^A(x) = \varphi_z^A(e, x).$$

Then $\psi(x) := \varphi_z^A(x, x)$ is A-computable and $A' = \operatorname{domain} \psi$ is A-c.e.

Proof 2.

 $\Rightarrow: \text{Let } B = \operatorname{domain} \varphi_e^A \text{ for some } e. \text{ By the Relativized } S_m^n\text{-Theorem we have a computable } s \text{ such that }$

$$\forall x, y: \varphi_e^{\mathcal{A}}(x) = \varphi_{s(x)}^{\mathcal{A}}(y).$$

Then
$$x \in B$$
 iff $\varphi_e^A(x) \downarrow$
iff $\varphi_{s(x)}^A(s(x)) \downarrow$
iff $s(x) \in A'$.

Hence s is a many-one reduction from B to A'.

 $\begin{array}{l} \leftarrow: \text{ Let } s \text{ be a many-one reduction from } B \text{ to } A'. \\ \text{Then } x \in B \text{ iff } \varphi^A_{s(x)}(s(x)) \downarrow \\ \quad \text{ iff } \varphi^A_e(x) \downarrow \qquad (\text{where } e \in \mathbb{N} \text{ is determined by } s) \\ \text{Hence } B = \operatorname{domain} \varphi^A_e \text{ is } A\text{-c.e.} \qquad \Box \end{array}$

A D N A 目 N A E N A E N A B N A C N

Proof 3, 4. (HW)

Jump of degrees

Definition

For the degree \mathbf{a} the jump

 $\mathbf{a'} := \deg(A')$ for some $A \in \mathbf{a}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is welldefined by the Jump Theorem 5.

Hence there is an infinitely ascending chain of degrees:

$$\mathbf{0} = \deg(\emptyset) = \{A : A \text{ is computable } \}$$

$$\mathbf{0}' = \deg(\emptyset') = \deg(K)$$

$$\mathbf{0}'' = \deg(\emptyset'') = \deg(F) = \deg(T)$$

Outlook

Question

Post's Problem: Is there a c.e. degree other than **0** and **0**'?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Are there incomparable degrees?
- Does the infimum exists for any two degrees?