Simple sets

Peter Mayr

Computability Theory, March 10, 2021

We are still working towards the answer to the following:

Question

Is every non-computable c.e. set many-one complete for Σ_1^0 ?

Witnesses for Σ_1^0 -predicates can be computed

Theorem (Σ_1^0 -Uniformization Theorem)

Let $P \subseteq \mathbb{N}^{k+1}$ be Σ^0_1 . Then there exists a computable $\psi \colon \mathbb{N}^k \to_p \mathbb{N}$ (a selector function for P) such that

$$\psi(\bar{x})\downarrow \text{ iff } \exists y \ P(\bar{x},y).$$

Further if $\psi(\bar{x}) \downarrow$, then $P(\bar{x}, \psi(\bar{x}))$.

Proof.

b By assumption we have computable $R(\bar{x}, y, z)$ such that

$$P(\bar{x}, y) \equiv \exists z \ R(\bar{x}, y, z).$$

- ▶ Let $\theta(\bar{x}) := \mu u \ R(\bar{x}, (u)_0, (u)_1)$.
- ▶ Then $\psi(\bar{x}) := (\theta(\bar{x}))_0$ satisfies the assertions.

Simple sets

Definition

A c.e. set A is **simple** if \bar{A} is infinite and does not contain an infinite c.e. subset.

Note

 $simple \Rightarrow not computable$

Theorem (Post, 1944)

Simple sets exist.

Proof.

Idea: Construct A that intersects every infinite c.e. set W_e with complement \bar{A} still infinite.

Define

$$P(e,x) \equiv x > 2e \land x \in W_e$$

with selector function

$$\psi(e) \downarrow \text{ iff } \exists x \ P(e,x)$$

- ▶ If W_e is infinite, then $\psi(e) \downarrow$ and $\psi(e) > 2e, \psi(e) \in W_e$.
- ▶ Claim: $A := \psi(\mathbb{N})$ is simple because
- ▶ 1. $A \cap W_e \neq \emptyset$ for all infinite W_e ;
- ▶ 2. \bar{A} is infinite as $|A \cap \{0, 1, ..., 2x\}| \le x$.

Creative \Rightarrow not simple

Recall: productive \Rightarrow not c.e.

Theorem

Every productive set *B* contains an infinite c.e. subset.

Proof.

Let B be productive and let p be computable such that

$$\forall x \ W_x \subseteq B \Rightarrow p(x) \in B \setminus W_x.$$

Claim: \exists computable f such that $W_{f(x)} = W_x \cup \{p(x)\}.$

- ► Consider $g(x,y) := \begin{cases} 0 & \text{if } y = p(x), \\ \varphi_x(y) & \text{else.} \end{cases}$
- ▶ By the S_n^m -Theorem we have a computable f such that $\varphi_{f(x)}(y) = g(x, y)$.

Let e with $W_e = \emptyset \subseteq B$. Then

$$\qquad \qquad W_{f^i(e)} = \{p(e), pf(e) \dots, pf^{i-1}(e)\} \subseteq B$$

▶
$$pf^i(e) \notin W_{f^i(e)}$$
 for all $i \in \mathbb{N}$.

Hence

$$A := \{ \underbrace{p(e)}_{e, pf(e)}, pf(e), pf^{2}(e), \dots \} \subseteq B$$

is infinite c.e.

No computable/complete dichotomy for c.e. sets

Corollary

There exist c.e. sets that are neither computable nor Σ_1^0 -complete.

Proof.

Let A be simple $(\exists by Post's Theorem)$. Then

- 1. A is not computable since \bar{A} is not c.e. by definition,
- 2. A is not creative ($=\Sigma_1^0$ -complete) because \bar{A} is not productive by the previous Theorem.

Lattice theoretic properties

Definition

Let \mathcal{E} denote the lattice of c.e. subsets of \mathbb{N} (under $\cap, \cup, \emptyset, \mathbb{N}$). A property of c.e. sets is **lattice theoretic** if it is first order definable in \mathcal{E} .

Examples of lattice theoretic properties

- 1. A is computable iff A has a complement in \mathcal{E} iff $\exists B: A \cup B = \mathbb{N}, A \cap B = \emptyset$.
- 2. A is finite iff $\forall B : A \cap B$ is computable.
- 3. A is simple iff A is not computable and $\forall B$ infinite: $A \cap B \neq \emptyset$.
- 4. A, B are **computably inseparable** iff $\neg(\exists \text{ computable } C: A \subseteq C \text{ and } C \cap B = \emptyset)$.
- 5. (Harrington) A is creative iff $\exists C \supseteq A \forall B \subseteq C \exists$ computable R: $R \cap C$ is non-computable, $R \cap A = R \cap B$.

Friedberg Splitting Theorem

Let $A \subseteq \mathbb{N}$ be c.e., noncomputable. Then A is the disjoint union of computably inseparable c.e. sets B_0, B_1 .