Hilbert's Tenth Problem

Peter Mayr

Computability Theory, March 3, 2021

Diophantine sets

The following is based on

M. Davis. Hilbert's Tenth Problem is unsolvable. The American Mathematical Monthly, Vol. 80, No. 3 (Mar., 1973), pp. 233-269.

Departing from our usual convention let $\mathbb{N} = \{1, 2, \dots\}$ here.

Definition

 $A\subseteq \mathbb{N}^k$ is **Diophantine** if there exists a polynomial $f(\underbrace{x_1,\ldots,x_k}_{\bar{x}},\underbrace{y_1,\ldots,y_\ell}_{\bar{y}})\in \mathbb{Z}[\bar{x},\bar{y}]$ such that

$$\bar{x} \in A \text{ iff } \exists \bar{y} \in \mathbb{N}^{\ell} \ f(\bar{x}, \bar{y}) = 0.$$

Examples of Diophantine sets

- ▶ composite numbers: $\{x \in \mathbb{N} : \exists y_1, y_2 \ x = (y_1 + 1)(y_2 + 1)\}$
- ▶ order relation: $x_1 \le x_2$ iff $\exists y \ x_1 + y 1 = x_2$

Diophantine functions

Definition

A partial function $f: \mathbb{N}^k \to_p \mathbb{N}$ is **Diophantine** if its graph

$$\{(\bar{x}, f(\bar{x})) : \bar{x} \in \operatorname{domain} f\}$$

is Diophantine.

Example

Polynomial functions $\{(\bar{x},y): y=p(\bar{x})\}$ are Diophantine.

Encoding tuples

Other Diophantine functions are harder to construct.

E.g. there is an encoding of k-tuples into natural numbers with Diophantine inverse:

Lemma (Sequence Number Theorem)

There is a Diophantine function S(i, u) such that

- ► $S(i, u) \le u$ and

Proof.

Omitted.

The crucial lemma

Lemma

The exponential function $h(n, k) := n^k$ is Diophantine.

Proof.

Analysis of Diophantine equations starting from the Pell equation

$$x^{2} - dy^{2} = 1$$

 $d = a^{2} - 1 (a > 1)$

Details omitted.

Corollary

The following are Diophantine:

$$\binom{n}{k}$$
, $n!$, $\prod_{i=1}^{z} (x + yi)$

Closure of Diophantine predicates

Lemma

The class of Diophantine predicates is closed under \land , \lor , existential quantifiers and bounded universal quantifiers.

Proof.

- ▶ Conjunction: $\exists \bar{y} \ f(\bar{x}, \bar{y}) = 0 \land \exists \bar{z} \ g(\bar{x}, \bar{z}) = 0$ $\equiv \exists \bar{\mathbf{v}}, \bar{\mathbf{z}} \ f(\bar{\mathbf{x}}, \bar{\mathbf{v}})^2 + g(\bar{\mathbf{x}}, \bar{\mathbf{z}})^2 = 0$
- **Disjunction:** $\exists \bar{y} \ f(\bar{x}, \bar{y}) = 0 \lor \exists \bar{z} \ g(\bar{x}, \bar{z}) = 0$ $\equiv \exists \bar{\mathbf{v}}, \bar{\mathbf{z}} \ f(\bar{\mathbf{x}}, \bar{\mathbf{v}}) \cdot g(\bar{\mathbf{x}}, \bar{\mathbf{z}}) = 0$
- Existential quantifier: immediate
- ▶ Bounded universal quantifiers: $\forall z < k \exists \bar{y} \ f(\bar{x}, z, \bar{y}) = 0$ Substantially harder, uses that $\prod_{i=1}^{k} (x + yi)$ is Diophantine.

Example

Primes are Diophantine:

$$x$$
 is prime iff $x > 1 \land \forall y, z < x \ [yz < x \lor yz > x \lor y = 1 \lor z = 1]$

Diophantine = recursive

Theorem

A partial function is Diophantine iff it is recursive.

Proof.

 \Rightarrow : The graph of a Diophantine function f is of the form

$$\{(\bar{x},y) : \exists \bar{z} \ \rho(\bar{x},y,\bar{z}) = 0\}$$

for a polynomial p with integer coefficients, hence c.e. Thus f is computable (=recursive).

Show recursive functions are Diophantine by induction.

Base case: Clearly successor and projections are Diophantine.

Induction step: Show that the class of Diophantine functions is closed under composition, primitive recursion, and search μ .

Composition: If g, h_1, \ldots, h_k are Diophantine, then so is

$$f(\bar{x}) := g(h_1(\bar{x}), \ldots, h_k(\bar{x}))$$

since

$$y = f(\bar{x}) \text{ iff } \exists y_1, \dots, y_k \left[y_1 = h_1(\bar{x}) \land \dots \land y_k = h_k(\bar{x}) \land y = g(y_1, \dots, y_k) \right]$$

Search μ **:** If $g(\bar{x}, y)$ is Diophantine, then so is

$$f(\bar{x}) := \min\{y : g(\bar{x}, y) = 0 \text{ and } (\bar{x}, t) \in \operatorname{domain} g \ \forall t \leq y\}$$

since

$$y = f(\bar{x}) \text{ iff } g(\bar{x}, y) = 0 \land \forall t \leq y \exists u \ g(\bar{x}, t) = u \neq 0.$$

Primitive recursion: For g, h Diophantine, define f by

$$f(\bar{x}, 1) := g(\bar{x})$$

 $f(\bar{x}, y + 1) := h(\bar{x}, y, f(\bar{x}, y))$

Idea: Encode $f(\bar{x}, 1), \dots, f(\bar{x}, y)$ as some $u \in \mathbb{N}$ by the Sequence Number Theorem.

Then f is Diophantine since $z = f(\bar{x}, y)$ iff

$$\exists u \ [S(1,u) = g(\bar{x}) \land \\ \forall t < y \ S(t+1,u) = h(\bar{x},y,S(t,u)) \land \\ z = S(y,u)].$$

Hilbert's Tenth Problem is not solvable

MRDP-Theorem (Matiyasevich, Robinson, Davis, Putnam)

 $A \subseteq \mathbb{N}$ is diophantine iff it is c.e.

Proof

⇒: immediate from definition

 \Leftarrow : Assume *A* is c.e.

Then we have a computable function f such that

$$A = \{x \in \mathbb{N} : \exists y \ f(x, y) = 0\}.$$

- Since f is Diophantine, the binary predicate f(x, y) = 0 is Diophantine.
- ► Thus A is Diophantine.

Corollary

There exists a polynomial $f(x, \bar{y}) \in \mathbb{Z}[x, \bar{y}]$ for which

$$\{x \in \mathbb{N} : \exists \bar{y} \in \mathbb{N}^{\ell} \ f(x, \bar{y}) = 0\}$$

is not computable.

Note

- ▶ Hence given a polynomial p over \mathbb{Z} , it is not decidable whether p has roots in \mathbb{N} .
- ▶ By a Theorem of Lagrange, every $n \in \mathbb{N}$ is the sum of 4 squares.
- ▶ Hence $p(y_1, ..., y_\ell) = 0$ has solutions in \mathbb{N} iff

$$p(1+a_1^2+b_1^2+c_1^2+d_1^2,\ldots,1+a_\ell^2+b_\ell^2+c_\ell^2+d_\ell^2)=0$$

has solutions in \mathbb{Z} .

▶ Thus it is not decidable whether polynomials over \mathbb{Z} have integer roots either.

Concluding remarks

1. Given a DTM that accepts $A \subseteq \mathbb{N}$, one can construct a polynomial f over \mathbb{Z} such that

$$x \in A \text{ iff } \exists \bar{y} \in \mathbb{N}^{\ell} \ f(x, \bar{y}) = 0,$$

and conversely.

- 2. Each Diophantine set can be defined with a polynomial of total degree ≤ 4 (arbitrary number of variables).
- 3. Each Diophantine set in $\mathbb N$ can be defined with a polynomial of \leq 15 variables.
- 4. Gödel's First Incompleteness Theorem: For each consistent axiomatization Σ of arithmetic on \mathbb{N} , there exists a polynomial $f(\bar{x}) \in \mathbb{Z}[\bar{x}]$ without roots over \mathbb{N} but such that

$$\forall \bar{x}: f(x) \neq 0$$

is not provable from Σ .

[Suppose otherwise. Since a DTM can enumerate all consequences of Σ , then also all polynomials without roots. Contradiction.]

