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Diophantine sets
The following is based on

» M. Davis. Hilbert's Tenth Problem is unsolvable. The
American Mathematical Monthly, Vol. 80, No. 3 (Mar.,
1973), pp. 233-2609.

Departing from our usual convention let N = {1,2,...} here.

Definition
A C N¥ is Diophantine if there exists a polynomial
(X1, s Xks V15 -+, Y0) € Z[X,¥] such that
\—Y—/ \—Y—/
x y

x € Aiff 3y € N* f(x,7) = 0.

Examples of Diophantine sets

» composite numbers: {x € N : TJy;,y0 x = ()1 +1)(y2 + 1)}
» order relation: x3 < x iff Jy x1+y—1=x



Diophantine functions

Definition
A partial function f: N¥ —p N is Diophantine if its graph

{(x,f(x)) : x € domainf}
is Diophantine.

Example
Polynomial functions {(x,y) : y = p(x)} are Diophantine.



Encoding tuples

Other Diophantine functions are harder to construct.
E.g. there is an encoding of k-tuples into natural numbers with
Diophantine inverse:
Lemma (Sequence Number Theorem)
There is a Diophantine function S(i, u) such that
» S(i,u) < uand
> Yk € NVY(a1,...,ax) € NFIu e NVi < k: S(i,u) = a

Proof.
Omitted.



The crucial lemma

Lemma
The exponential function h(n, k) := n* is Diophantine.

Proof.

Analysis of Diophantine equations starting from the Pell equation

x> —dy?=1
d=a’>-1(a>1)

Details omitted.

Corollary
The following are Diophantine:

<:) nl, f[(x+yi)

i=1



Closure of Diophantine predicates

Lemma
The class of Diophantine predicates is closed under A, V,
existential quantifiers and bounded universal quantifiers.

Proof.
» Conjunction: Jy f(x,y) =0A 3z g(x,z

y )
» Disjunction: Jy f(x,y) =0V 3z g(x,z) =0

> Existential quantifier: immediate

» Bounded universal quantifiers: Vz < k3y f(x,z,y) =0
Substantially harder, uses that Hf-(zl(x + yi) is Diophantine.

O

Example

Primes are Diophantine:
xis primeiff x > 1AVy,z<x[yz<xVyz>xVy=1Vz=1]



Diophantine = recursive

Theorem
A partial function is Diophantine iff it is recursive.

Proof.
=-: The graph of a Diophantine function f is of the form

{(%,y) : 3z p(X,y,2) =0}

for a polynomial p with integer coefficients, hence c.e.

Thus f is computable (=recursive).

<: Show recursive functions are Diophantine by induction.
Base case: Clearly successor and projections are Diophantine.

Induction step: Show that the class of Diophantine functions is
closed under composition, primitive recursion, and search .



Composition: If g, hy,..., h, are Diophantine, then so is
f(x) == g(h(x), ..., h(x))
since
y = f(x)iff Iy1, ..., yk [y = hi(R)A- - Ayk = he()Ay = g1, -+, yk)]
Search u: If g(x,y) is Diophantine, then so is
f(x):=min{y : g(x,y) =0and (X,t) € domaing Vt < y}
since

y =f(x)iff g(x,y) =0 A Vt <y3Jug(x,t)=u#0.



Primitive recursion: For g, h Diophantine, define f by
f(x,1) == g(x)
f(X,y +1) = h(x,y,f(x,y))

Idea: Encode f(x,1),...,f(

Number Theorem.

X,y) as some u € N by the Sequence

Then f is Diophantine since z = f(x, y) iff
Ju [S(1,u) =g(X) A
Vt<y S(t+1,u) = h(x,y,S(t,u)) A
z =5y, u)].



Hilbert's Tenth Problem is not solvable

MRDP-Theorem (Matiyasevich, Robinson, Davis, Putnam)
A C N is diophantine iff it is c.e.

Proof
=-: immediate from definition
<: Assume A is c.e.

» Then we have a computable function f such that
A={xeN : Jy f(x,y) = 0}.

» Since f is Diophantine, the binary predicate f(x,y) =0 is
Diophantine.

» Thus A is Diophantine.



Corollary
There exists a polynomial f(x,y) € Z|[x, y] for which

{xeN : Iy eN f(x,y) =0}
is not computable.

Note

» Hence given a polynomial p over Z, it is not decidable
whether p has roots in N.

» By a Theorem of Lagrange, every n € N is the sum of 4
squares.

» Hence p(y1,...,yr) = 0 has solutions in N iff
p(l+ a2+ b2+ 2+ d?,. . 1+ a2+ b2+ +d?)=0

has solutions in Z.

» Thus it is not decidable whether polynomials over Z have
integer roots either.



Concluding remarks

1. Given a DTM that accepts A C N, one can construct a
polynomial f over Z such that

x € Aiff 3y e N f(x,y) =0,

and conversely.

2. Each Diophantine set can be defined with a polynomial of
total degree < 4 (arbitrary number of variables).

3. Each Diophantine set in N can be defined with a polynomial
of < 15 variables.

4. Godel’s First Incompleteness Theorem: For each
consistent axiomatization X of arithmetic on N, there exists a
polynomial f(X) € Z[X] without roots over N but such that

Vx: f(x)#0

is not provable from %.

[Suppose otherwise. Since a DTM can enumerate all
consequences of X, then also all polynomials without roots.
Contradiction.]



