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Diophantine sets
The following is based on

I M. Davis. Hilbert’s Tenth Problem is unsolvable. The
American Mathematical Monthly, Vol. 80, No. 3 (Mar.,
1973), pp. 233-269.

Departing from our usual convention let N = {1, 2, . . . } here.

Definition
A ⊆ Nk is Diophantine if there exists a polynomial
f (x1, . . . , xk︸ ︷︷ ︸

x̄

, y1, . . . , y`︸ ︷︷ ︸
ȳ

) ∈ Z[x̄ , ȳ ] such that

x̄ ∈ A iff ∃ȳ ∈ N` f (x̄ , ȳ) = 0.

Examples of Diophantine sets

I composite numbers: {x ∈ N : ∃y1, y2 x = (y1 + 1)(y2 + 1)}
I order relation: x1 ≤ x2 iff ∃y x1 + y − 1 = x2



Diophantine functions

Definition
A partial function f : Nk →p N is Diophantine if its graph

{(x̄ , f (x̄)) : x̄ ∈ domain f }

is Diophantine.

Example

Polynomial functions {(x̄ , y) : y = p(x̄)} are Diophantine.



Encoding tuples

Other Diophantine functions are harder to construct.
E.g. there is an encoding of k-tuples into natural numbers with
Diophantine inverse:

Lemma (Sequence Number Theorem)

There is a Diophantine function S(i , u) such that

I S(i , u) ≤ u and

I ∀k ∈ N ∀(a1, . . . , ak) ∈ Nk ∃u ∈ N ∀i ≤ k : S(i , u) = ai

Proof.
Omitted.



The crucial lemma

Lemma
The exponential function h(n, k) := nk is Diophantine.

Proof.
Analysis of Diophantine equations starting from the Pell equation

x2 − dy2 = 1
d = a2 − 1 (a > 1)

Details omitted.

Corollary

The following are Diophantine:(
n

k

)
, n!,

z∏
i=1

(x + yi)



Closure of Diophantine predicates

Lemma
The class of Diophantine predicates is closed under ∧,∨,
existential quantifiers and bounded universal quantifiers.

Proof.
I Conjunction: ∃ȳ f (x̄ , ȳ) = 0 ∧ ∃z̄ g(x̄ , z̄) = 0

≡ ∃ȳ , z̄ f (x̄ , ȳ)2 + g(x̄ , z̄)2 = 0

I Disjunction: ∃ȳ f (x̄ , ȳ) = 0 ∨ ∃z̄ g(x̄ , z̄) = 0
≡ ∃ȳ , z̄ f (x̄ , ȳ) · g(x̄ , z̄) = 0

I Existential quantifier: immediate

I Bounded universal quantifiers: ∀z < k ∃ȳ f (x̄ , z , ȳ) = 0
Substantially harder, uses that

∏k
i=1(x + yi) is Diophantine.

Example

Primes are Diophantine:
x is prime iff x > 1 ∧ ∀y , z < x [yz < x ∨ yz > x ∨ y = 1 ∨ z = 1]



Diophantine = recursive

Theorem
A partial function is Diophantine iff it is recursive.

Proof.
⇒: The graph of a Diophantine function f is of the form

{(x̄ , y) : ∃z̄ p(x̄ , y , z̄) = 0}

for a polynomial p with integer coefficients, hence c.e.
Thus f is computable (=recursive).

⇐: Show recursive functions are Diophantine by induction.

Base case: Clearly successor and projections are Diophantine.

Induction step: Show that the class of Diophantine functions is
closed under composition, primitive recursion, and search µ.



Composition: If g , h1, . . . , hk are Diophantine, then so is

f (x̄) := g(h1(x̄), . . . , hk(x̄))

since

y = f (x̄) iff ∃y1, . . . , yk [y1 = h1(x̄)∧· · ·∧yk = hk(x̄)∧y = g(y1, . . . , yk)]

Search µ: If g(x̄ , y) is Diophantine, then so is

f (x̄) := min{y : g(x̄ , y) = 0 and (x̄ , t) ∈ domain g ∀t ≤ y}

since

y = f (x̄) iff g(x̄ , y) = 0 ∧ ∀t ≤ y ∃u g(x̄ , t) = u 6= 0.



Primitive recursion: For g , h Diophantine, define f by

f (x̄ , 1) := g(x̄)
f (x̄ , y + 1) := h(x̄ , y , f (x̄ , y))

Idea: Encode f (x̄ , 1), . . . , f (x̄ , y) as some u ∈ N by the Sequence
Number Theorem.

Then f is Diophantine since z = f (x̄ , y) iff

∃u [S(1, u) = g(x̄) ∧
∀t < y S(t + 1, u) = h(x̄ , y , S(t, u)) ∧
z = S(y , u)].



Hilbert’s Tenth Problem is not solvable

MRDP-Theorem (Matiyasevich, Robinson, Davis, Putnam)

A ⊆ N is diophantine iff it is c.e.

Proof
⇒: immediate from definition
⇐: Assume A is c.e.

I Then we have a computable function f such that

A = {x ∈ N : ∃y f (x , y) = 0}.

I Since f is Diophantine, the binary predicate f (x , y) = 0 is
Diophantine.

I Thus A is Diophantine.



Corollary

There exists a polynomial f (x , ȳ) ∈ Z[x , ȳ ] for which

{x ∈ N : ∃ȳ ∈ N` f (x , ȳ) = 0}

is not computable.

Note
I Hence given a polynomial p over Z, it is not decidable

whether p has roots in N.

I By a Theorem of Lagrange, every n ∈ N is the sum of 4
squares.

I Hence p(y1, . . . , y`) = 0 has solutions in N iff

p(1 + a2
1 + b2

1 + c2
1 + d2

1 , . . . , 1 + a2
` + b2

` + c2
` + d2

` ) = 0

has solutions in Z.

I Thus it is not decidable whether polynomials over Z have
integer roots either.



Concluding remarks
1. Given a DTM that accepts A ⊆ N, one can construct a

polynomial f over Z such that

x ∈ A iff ∃ȳ ∈ N` f (x , ȳ) = 0,

and conversely.

2. Each Diophantine set can be defined with a polynomial of
total degree ≤ 4 (arbitrary number of variables).

3. Each Diophantine set in N can be defined with a polynomial
of ≤ 15 variables.

4. Gödel’s First Incompleteness Theorem: For each
consistent axiomatization Σ of arithmetic on N, there exists a
polynomial f (x̄) ∈ Z[x̄ ] without roots over N but such that

∀x̄ : f (x) 6= 0

is not provable from Σ.
[Suppose otherwise. Since a DTM can enumerate all
consequences of Σ, then also all polynomials without roots.
Contradiction.]


