Many-one completeness for arithmetical hierarchy

Peter Mayr

Computability Theory, March 1, 2021
What are the hardest Σ^0_n-problems?

To simplify notation we only consider subsets of \mathbb{N}.

Recall

- For $A, B \subseteq \mathbb{N}$, A is **many-one reducible** to B (short $A \leq^m B$) if there exists a total computable function $f : \mathbb{N} \to \mathbb{N}$:

 $$\forall x \in \mathbb{N} : x \in A \iff f(x) \in B.$$

- A is c.e. iff $A \leq^m AP$ (HW 4). Hence the acceptance problem is “hardest” among Σ^0_1-sets.

Question

Can this be generalized to higher levels of the arithmetical hierarchy?
Closure under many-one reductions

Lemma
If $A \leq_m B$ and B is Σ^0_n, Π^0_n, respectively, then A is Σ^0_n, Π^0_n, respectively.

Proof.
Assume $f : A \to B$ is a many-one reduction and $B(z)$ is Σ^0_n. Then

$$A(x) \equiv B(f(x))$$

is Σ^0_n since Σ^0_n is closed under substitution by total computable functions.

\qed
\[\Sigma^0_n\]-complete sets

Definition

\(C \subseteq \mathbb{N}\) is \(\Sigma^0_n\)-complete if

1. \(C\) is \(\Sigma^0_n\) and
2. for every \(\Sigma^0_n\)-set \(A\): \(A \leq_m C\).

Theorem

For each \(n \geq 1\)

1. \(\Sigma^0_n\)-complete sets exist;
2. no \(\Sigma^0_n\)-complete set is \(\Pi^0_n\).
Universal \Rightarrow complete

Proof.
1. Let $U_n(e, x)$ be a universal Σ^0_n-predicate. Then

$$C_n := \{2^e3^x : U_n(e, x)\}$$

is Σ^0_n-complete since for each $\Sigma^0_n A$, we have $e \in \mathbb{N}$:

$$A(x) \text{ iff } U_n(e, x) \text{ iff } 2^e3^x \in C_n.$$

2. Recall: $K_n(x) = U_n(x, x)$ is Σ^0_n, not Π^0_n.
Let C be Σ^0_n-complete.
Then $K_n \leq_m C$ and C cannot be Π^0_n either. \Box
Further complete examples 1

\[T = \{ e : \varphi_e \text{ is total} \} \text{ is } \Pi^0_2 \text{-complete.} \]

Proof.

Recall \(T \) is \(\Pi^0_2 \). Let \(R \) be computable and

\[A(x) \equiv \forall y \exists z \ R(x, y, z) \quad (\Pi^0_2) \]

- Define \(\psi(x, y) := \mu z \ R(x, y, z) \).
- By the \(S^m_n \)-Theorem for \(m = n = 1 \), we have a computable \(h := S^1_1 \) such that

\[\psi(x, y) = \varphi_{h(x)}(y) \text{ for all } x, y. \]

- Then \(x \in A \text{ iff } \forall y \ \varphi_{h(x)}(y) \downarrow \text{ iff } \varphi_{h(x)} \text{ is total iff } h(x) \in T. \)

- Hence the \(S^m_n \)-Theorem yields a many-one reduction \(h \) from \(A \) to \(T \).
Further complete examples 2, 3

The **diagonal halting problem** $K = \{ x : \varphi_x(x) \downarrow \}$ is Σ^0_1-complete.

Proof

Let R be computable and

$$A(x) \equiv \exists y \ R(x, y) \quad (\Sigma^0_1)$$

- Define $\psi(x, z) := \mu y \ R(x, y)$ (independent of z!).
- By the S_n^m-Theorem, we have a computable h such that

$$\psi(x, z) = \varphi_{h(x)}(z) \text{ for all } x, z.$$

- Then $x \in A$ iff $\psi(x, z) \downarrow$
 iff $\varphi_{h(x)}(h(x)) \downarrow$
 iff $h(x) \in K$.

$K_n := \{ x : U_n(x, x) \}$ is Σ^0_n-complete for $n \geq 1$.

\square